
AN AUTOMATED END-TO-END MULTI-AGENT QOS BASED ARCHITECTURE FOR

SELECTION OF GEOSPATIAL WEB SERVICES

Manan Shah*, Yogesh Verma+, R Nandakumar+

*M.Tech. Student, DDIT, Nadiad, Gujarat; +Space Applications Centre, Indian Space Research Organisation,

Ahmedabad–380015, India
(mananshah88@gmail.com), (yogeshverma, nandakumar)@sac.isro.gov.in

Commission IV/5: Distributed and Web-Based Geoinformation Services and Applications

KEYWORDS- Fuzzy, Geospatial Web Services, Multi-Agent System, Quality of Service (QoS), SOA, SOAP, UDDI, WSDL.

ABSTRACT:

Over the past decade, Service-Oriented Architecture (SOA) and Web services have gained wide popularity and acceptance from

researchers and industries all over the world. SOA makes it easy to build business applications with common services, and it

provides like: reduced integration expense, better asset reuse, higher business agility, and reduction of business risk.

Building of framework for acquiring useful geospatial information for potential users is a crucial problem faced by the GIS domain.

Geospatial Web services solve this problem. With the help of web service technology, geospatial web services can provide useful

geospatial information to potential users in a better way than traditional geographic information system (GIS). A geospatial Web

service is a modular application designed to enable the discovery, access, and chaining of geospatial information and services

across the web that are often both computation and data-intensive that involve diverse sources of data and complex processing

functions.

With the proliferation of web services published over the internet, multiple web services may provide similar functionality, but

with different non-functional properties. Thus, Quality of Service (QoS) offers a metric to differentiate the services and their

service providers. In a quality-driven selection of web services, it is important to consider non-functional properties of the web

service so as to satisfy the constraints or requirements of the end users. The main intent of this paper is to build an automated end-

to-end multi-agent based solution to provide the best-fit web service to service requester based on QoS.

1. INTRODUCTION

Service Oriented Architecture (SOA) can be achieved through

Web services, which are self-contained, self-describing,

modular applications that can be published, located and

invoked across the Web. With the support of a set of

widespread industry-accepted standards like Web Service

Description Language (WSDL), Universal Description

Discovery & Integration (UDDI) and Simple Object Access

Protocol (SOAP), Web services are easy to facilitate Enterprise

Application Integration (EAI) [1].

SOA comprises of three main actors namely service provider,

service requestor and service broker/registry as depicted in

Figure 1.

Figure 1.Service Oriented Architecture

Service providers create and publish the web service to the

registry with service broker. The service requestor can discover

any service from the registry and bind its application/service to

Service Provider's web service. Service Broker has registry in

which it maintains all the information regarding the web

services as well as service providers. For discovery, service

requestor passes its functional requirement to the broker, and

on the basis of the requirements, the discovered list will be

returned back to the service requestor. Service requestor can

select any web service from the list and bind it to its

application or service.

The large number of web service providers throughout the

globe, have produced numerous web services providing similar

functionality. This necessitates the use of tools and techniques

to search suitable services available over the web. Quality of

Service (QoS) is one of the decisive factors in selecting the

desired web service for the requester. In selecting a web

service for use, it is important to consider non-functional

properties of the web service so as to satisfy the constraints or

requirements of users.

The twin challenges of suitable discovery & selection leads us

to take up this research problem of best-fit web service among

similar web services based on functional as well as QoS

parameters.

We have used the software agents. It is autonomous software

entities and can react with other software entities, including

humans, machines, and other software agents in various

environments and across various platforms. Multi-agent

systems are composed of agents coordinated through their

relationships with one another [2].

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

243

Section 2 covers the related work. While section 3, describes

the developed system. Section 4 illustrates the simulation

results carried out on weather web service. Section 5 describes

the conclusion & future scope.

2. QOS PARAMETERS

The service discovery is based on the UDDI, in which the

services can be searched by using functional attributes. For the

non functional attributes i.e. Quality of Service (QoS) there are

various approaches or methods suggested by researchers. Lots

of models and frameworks have been proposed for discovery

and selection of web services based on QoS parameters as

explained below.

The QoS parameters are adopted by extending the conceptual

Publishing & Discovery models [3] [4]. Such models are

mostly associated with UDDI directories. Ran et al. [3]

proposed a four roles model for publishing QoS by extending

the UDDI registry and a Web Services QoS certifier. The

difference between the new UDDI registry and the standard

one is that the new UDDI registry has information about the

functional description and its associated QoS attributes. This

proposal supports two directions; publishing and discovering as

well as verification and certification. Serhani et al. [4] added a

new component, a broker, to the original Web Service

framework and used a QoS-enabled UDDI called UDDIe

registry. The QoS-enabled UDDIe is a registry, which supports

the publication and discovery of the QoS aware services. It

supports the idea of blue pages which enables the discovery of

Web Services based on user defined attributes.

Another approach is through Web Services Description &

Handling models. Such models were associated with policy

e.g. WS-Policy, which is a specification that allows Web

Services to advertise their capabilities, requirements, and

general characteristics in a flexible and extensible grammar

using XML format [5]. A policy assertion is a requirement or

rule which describes Web Services behavior and gives it a

better robustness and extendibility. WS-Policy framework is

used to include some QoS properties such as security, reliable

messaging and transaction. Mathes et al [6] has proposed an

approach to use the WS-Policy to include other QoS attributes

by extending it.

Another approach is a combination of both the above

mentioned approaches. Garcia et al. [7] proposed a

combination of UDDI and WS-Policy approach. In their work,

the authors extend the UDDI registry to include WS-Policy and

add a broker to the standardized UDDI architecture. Ontology

Web Language (OWL) as well as ABLE Rule Language (ARL)

is used to enrich QoS policies with semantic information. Such

enrichments allow more flexible interactions between policies.

Another approach is SLA (Service Level Agreement) e.g.

WSLA. IBM proposes Web Service Level Agreements (WSLA)

which is an XML specification of SLAs for Web Services,

focusing on QoS constraints. We can not only specify the

Service Level Objectives (SLO) of a service and its service

operations, but also the measurement directives and

measurement endpoints for each quality dimension. WSLA

represents a configuration for a SLA management and

monitoring system.

Another approach is Model like DAMLS: provided an upper

ontology for semantic description of web services, including

specification of functionalities and QoS constraints [8].

The main drawbacks of these models/frameworks are that they

are not validating the QoS parameters provided by the service

providers. Also, there is no end-to-end solution for solving the

best-fit web service amongst the available similar services at

broker side. We are proposing an automated end-to-end Multi-

Agent QoS based architecture (AMAQ) to be implemented at

broker side for selection of web services.

3. AMAQ SYSTEM IMPLEMENTATION

The Automated Multi-Agent QoS based (AMAQ) System

Architecture and algorithms are described in this section.

3.1 AMAQ Architecture

The proposed architecture and functionalities are shown in

Figure 2.

Web Service Registry: The Service Provider (SP) shall register

the web services into registry. All the information related to

web service and service provider shall be stored in the web-

service registry. Service provider shall submit and update

(optional) the Web Service QoS parameters which are to be

stored in database along with .wsdl file. By reading that

description Service Requester (SR) can use the service of SP.

SP can also send QoS parameters through the Service Receptor

Agent i.e. serviceRecAgent. This serviceRecAgent aids in

registration of service and invokes the Parsing Agent,

parseAgent and QoS Measurement Agent, QoSAgent that will

aid in WSDL & QoS parameters validation.

WSDL Validation: The .wsdl file contains the description of the

web service, provided by service provider that is stored into

registry. Checking and validation of the .wsdl file shall be done

by the Parsing Agent, parseAgent. In the case of incomplete

information in .wsdl, service provider can get the feedback

from the registry. Based on feedback, SP can submit the proper

.wsdl.

QoS Parameters Validation: The QoS parameters shall be

calculated by QoS Measurement Agent, QoSAgent and the

differentiated result (Measured QoS – QoS provided by SP)

shall be stored in database.

When SR places a discovery request, the Request Receptor

Agent, reqRecAgent shall collect the functional and QoS

requirements and store internally to its data structure and

invoke the Discovery Agent, discoveryAgent.

Web Service Discovery: The SR shall discover the web service

from the registry. For the discovery, SR has to provide the

required web service functionalities as well as non-functional

parameters. The discoveryAgent shall match the SR

requirements with the available result sets from the QoS &

Web service registry database and provide the discovered web

services list to the Decision Agent, decisionAgent.

Web Service Selection & Ranking: The decisionAgent shall

select & rank the web service(s) using Fuzzy Methods.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

244

Figure 2. Automated End-to-End Multi-Agent QoS based Architecture

3.2 AMAQ Algorithms

The following algorithms were developed for realising the

proposed architecture namely serviceRecpAgent, reqRecAgent,

QoSAgent, parseAgent, discoveryAgent and decisionAgent.

3.2.1 serviceRecepAgent

Input: web service registration details, .wsdl file, QoS details.

Output: Stores the web service details.

Procedure:

1) serviceRecpAgent gets the input from SP.

2) Stores the web service details to UDDI.

3) Invokes the parseAgent and QoSAgent.

3.2.2 parseAgent

Input: .wsdl file.

Output: Parsing result.

Procedure:

1) parseAgent takes the input from the serviceRecpAgent.

2) For validation, this agent performs the following steps:

a. First it obtains a WSDLFactory instance via the static

newInstance method of WSDLFactory as defined in

JWSDL API.

b. Here, the purpose is only parsing the .wsdl documents.

So after creating an object, it uses newWSDLReader

method, to create the desired object. Any JAXP or

JAXP-compliant XML parser can be used in the parsing

of .wsdl documents.

c. By using getBinding(), getPortType(),

getOperations(),getMessages() methods, parserAgent

retrieves all the information.

d. Any failure in the retrieving procedure, agent considers

as invalid .wsdl otherwise valid .wsdl.

3) Stores the parsing results in the QoS database.

4) In the case of invalid .wsdl, missing values or reason for

invalidation will be displayed. And in the case of valid

.wsdl, the wsdl details will be displayed.

3.2.3 QoSAgent

Input: acess_url of web service.

Output: QoS result

Procedure:

1) Loop (For each and every registered web service from

UDDI)

a. A QoSAgent fetches acess_url for web service.

b. Send one request (data packet) to that URL and wait

until it gets the response.

c. Check the response code.

i. IF response code = 1000 then IP-acess_url is not

available. Then, service_availibility = false.

ii. Else IF response code = 503 then IP-PORT is

available but the web service is not found on

that location. Then, service_availibility = false.

iii. Else IF response code= 200 then web service is

available. Then, service_availibility = true.

d. Calculates the service_throughput from

service_availibility.

e. Stores the QoS result in a QoS database.

3.2.4 reqRecAgent

Input: functional description for discovery, QoS details

Procedure:

1) reqRecAgent gets the input from service requestor.

2) According to the requirement, it invokes the

discoveryAgent.

3.2.5 discoveryAgent

Input: Functional requirements, QoS requirements.

Output: Discovered web service list.

Procedure:

1) discoveryAgent gets the input from the

serviceRecpAgent.

2) Loop (For each and every registered web service from

UDDI)

a. Match the service details with requirements.

b. Check parsing results of the service.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

245

c. IF details matched and parsing result indicate

valid .wsdl, then put this web service in a

discovered list.

3) Sends the discovered list to the decisionMakerAgent

3.2.6 decisionMakerAgent

Input: Discovered web service list.

Output: Ranked web service list.

Procedure:

1) decisionMakerAgent gets the discovered web service

list from the discoveryAgent.

2) Loop (For each and every service listed in discovered

list)

a. Fetch the QoS (availability and throughput)

results of service.

b. Calculate input membership levels.

c. Find the fuzzy rules which can be applied to the

fuzzy inputs. Evaluate the rules by using center of

gravity method (COG). These rules are as per

Table 1.

d. Defuzzify the fuzzy output to system output.

Rule Availability Throughput QoS

1 Bad Bad Bad

2 Bad Good Bad

3 Bad Best Good

4 Good Bad Bad

5 Good Good Good

6 Good Best Best

7 Best Bad Good

8 Best Good Best

9 Best Best Best

Table 1. Fuzzy Rules

3) Sorts the list according to final numeric value, which

gets from defuzzification step and rank it accordingly.

4) Sends the ranked web service list to the service

requestor.

4. SIMULATION OF GEO WEATHER WEB SERVICE

For validating the developed system, we have created an

environment for simulating the geo-weather web services as

described below:

1. Web Service Creation: Three geo-weather web services

were developed that provide weather information when a

corresponding city and country are provided as input.

These SOAP based web services were deployed over Web

Server.

2. Registration to UDDI: An interface to UDDI Server is

developed. The developed web services were registered to

UDDI Server.

3. WSDL Parsing- The wsdl parsing of the sample web

services was done and the results were stored.

4. Discovery & Selection of Web Service- Based on

keyword entered by the service requester the list of best

fit web services was generated. For our case, we have

entered ‘weather’ as keyword and the three sample web

services were fetched as shown in Figure 3.

On selection of wsdl results option, two web services

were listed that filters the web service that doesn’t have

syntactically correct wsdl. The fuzzy details related to

each web service can be displayed.

5. Ranking- Based on the fuzzy calculations as described in

section 3.2.6, the web services were ranked and displayed.

For simulation, we have considered two input QoS

parameters namely (Availability and Throughput).

The input fuzzy set membership function (Bad, Good,

Best) is a triangle form. The range of the input is given

below:

Bad: = {(0, 1) (60, 1) (75, 0)};

Good: = {(60, 0) (75, 1) (90, 0)};

Best: = {(75, 0) (100, 1)};

For output, the same range has been applied. For

defuzzification, we have used “Center of Gravity” method.

The overall QoS results, depicted in Figure 4 (a-c) and

Service requester feedbacks (in context to good, bad) were

listed.

6. Web Service Feedback- Service requester can provide

feedback for the respective web services.

7. Binding- We have developed a web application to bind

the highest ranked weather web service for fetching the

weather information based on city and country.

5. CONCLUSION & FUTURE SCOPE

We have developed an automated end-to-end solution to be

deployed at broker side that provides a common framework for

service registration, wsdl validation, QoS measurement,

discovery and selecting the highest ranked web service using

multi-agent system. The solution can be used for intranet as

well as internet environment.

Currently, we have considered only two QoS parameters

namely availability and throughput for implementation. In

future the other domain specific Geospatial QoS parameters

namely: accuracy of geospatial data, resolution, completeness,

and data types also be considered.

References from Books:

[1] Web services: Principles and technology - by Papazoglou,

Michael P.; Harlow, Pearson Education.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

246

Figure 3. AMAQ System – Discovery & Selection GUI

(a) QoS Result=91.63 (b) QoS Result=33.86 (c) QoS Result=33.86

Figure 4 (a-c). QoS Results of three Sample Web Services

References from Other Literature:

[2] Caglayan, Alper, and Colin Harrison, Agent Sourcebook,

John Wiley & Sons, New York, 1997.

[3] Shuping Ran, “A Model for Web Services Discovery with

QoS.” Published in newsletter, ACM SIGecom Exchanges.

Volume 4 Issue 1, Spring, 2003. ACM New York, NY, USA.

[4] A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A QoS

broker based architecture for efficient web services selection”,

IEEE International Conference on Web Services, 2005, Issue

Date: 11-15 July 2005 pp. 113 - 120 vol.1.

[5] Ahmed Al-Moayed, Bernhard Hollunder, “Quality of

Service Attributes in Web Services.” 2010 Fifth International

Conference on Software Engineering Advances (ICSEA), Issue

Date: 22-27 Aug. 2010, pp. 367 - 372.

[6] M. Mathes, S. Heinzl, and B. Freisleben,

"WSTemporalPolicy: A WS-Policy extension for describing

service properties with time constraints". 32nd Annual IEEE

Int. Computer Software and Applications COMPSAC ’08,

2008, pp. 1180–1186.

[7] D. Z. G. Garcia and M. B. F. de Toledo; "Semantics-

enriched QoS policies for web service interactions." in

WebMedia ’06: Proceedings of the 12th Brazilian Symposium

on Multimedia and the web. ACM, 2006, pp. 35–44.

[8] S.M. Babamir, M.R. Shishehchi,S. karimi, "A Broker-

Based Architecture for Quality-Driven Web Services

Composition", IEEE 2010.

Acknowledgements

Authors thank Shri. Santanu Chowdhury, Deputy Director,

Signal & Image Processing (SIPA), Space Applications Centre

(SAC), for the constant support and keen interest towards this

work. They also thank the internal reviewers for suggesting

improvements to an earlier version of this paper. They also

thank Shri. A. S. Kiran Kumar, Director, Space Applications

Centre for permitting the presentation of this paper during

XXII Congress of International Society for Photogrammetry

and Remote Sensing (ISPRS-2012) to be held at Melbourne,

Australia during August 25- September 1, 2012.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

247

