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ABSTRACT

We analyze a simplified probability model that as-
sumes normality and homoscedasticity of vowel pa-
rameters’ distributions. We arrive at explicit formu-
lae that describe functional relationship between a
natural Euclidean distance function in the model and
the confusability of vowel categories. We propose a
solution to address a common case when confusabil-
ity of a pair of vowel categories is very low, which
leads to uncertainty of distance value. The solution
is applicable when the class boundary is provided by
a real-valued discriminating function. Examples of
perceptual vowel diagrams obtained with new met-
ric are presented based on vowel samples spoken by
male speakers from TIMIT corpus.
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vowel space, TIMIT, annotated corpus

1. INTRODUCTION

Vowels constitute an important set of speech ges-
tures in any language. Better understanding of a lan-
guage, or a language corpus can be gained by visu-
alizing the vowel set. This can be done in three ap-
proaches, articulatory, acoustic and perceptual. One
of the earliest diagrams describing vowel space is
the IPA chart, which maps vowels across two essen-
tially articulatory dimensions, openness and back-
ness. Another common way to describe the vowel
space is via formants, especially through an inverted
F1-F2 plot. Formants are measurable acoustic qual-
ities of sound and thus have an added advantage of
being exact. In our paper we are concerned with the
third approach, namely visualization of perceptual
vowel space.

Perception usually refers to human perception
of the sound. Many studies have been conducted
via psychoacoustic experiments where listeners are
asked to compare vowel qualities. Often, multidi-
mensional scaling (MDS) [1] was then used to de-

scribe the perceptual vowel space [2-9]. Gener-
ally, the resulting vowel configuration mirrored IPA
chart and the dimensions could be given a phoneti-
cal meaning, e.g. backness, openness, rhotacization
or FO.

With the advancement of machine learning that
brought speech recognition to daily lives of many
people, perception of speech is no longer an exclu-
sive domain of humankind. Since MDS was used
with great success in human studies, it is natural to
ask how to extend tried-and-true MDS to visualize a
machine’s perceptual vowel space?

The key requirement to carry out MDS is to define
a distance function between vowel categories. Such
a function could be based on a distance function be-
tween individual pairs of vowels [10, 11]. We es-
chew such approach, since it is hard to make a strong
argument for any particular vowel distance function.
However, by imposing simplifying assumptions on
the vowel space, in the following section we will
be able to deduce the existence of a natural distance
of vowel categories derived from vowel pair confus-
ability (Theorem 1).

2. A THEORETICAL MODEL

The result of an MDS procedure is a low dimen-
sional display of vowel categories. If we are inter-
ested in perceptual vowel chart, the key requirement
is that vowels closer to each other in the chart imply
“perceptual closeness”. This “perceptual closeness”
is directly related to confusability, or the likelihood
of incorrect classification between pairs of vowels.
Such likelihood is of course affected by prior prob-
abilities p(C;) of vowel categories C;. For simplic-
ity througout the paper we assume a uniform prior
p(C;) = p(Cj). We define the asymmetric confus-
ability aconf(-) of a binary recognizer R for pairs of
vowel categories C;,C; as

(1)  aconf(C;,C;) = p(R thinks v is C;|v is C})



and symmetric confusability
confg(C;,Cj) by

conf(C;,Cj) =

(G, C;j f(C;,C;
@ conf(C,,;) = COMGE) aconllC. )
Then a vowel category distance function that has the
expected “closeness” property can be defined by set-

ting
(3)  d(G;,C)) = {(coni(C;,C))),

where {(s) is any decreasing function on (0,3).

Now we will describe a simple probabilistic model

of vowel space, where one choice for zeta function

is quite natural.
Assume further that:

A1) any vowel can be specified using just two real
valued parameters, call them x and y,

A2) for a given vowel category C;, latent vowel pa-
rameters x and y follow a normal distribution in
two-parameter space with mean m; and covari-
ance matrix X;.

A3) for two vowel categories, the Gaussians are ho-
moscedastic, i.e. their covariance matrices are
all the same, equal to X.

Under these assumptions, the optimal classifier be-

tween two vowel categories is just LDA and the con-

fusability can be then explicitly determined. The

LDA projection vector p;; for classes C;, C; is p;j o<

X !'(m;—m;). Let m;, Gizj be the parameters of nor-

mal distributions of C; when projected onto p;;. Set

Aij = [[mi; —my||.

The crucial point is that confusability between C;
and C; depends only on the ratio

4 Fj=A;/(20;)

namely

1 1 Fj
(5) conf(C;,Cj) :5_7/ T o2
0
1
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Going back to (3), we have the following result.

Theorem 1. Assume that vowel categories satisfy
Al)-A3) and R(i, j) is an optimal classifier of vowel
categories C; and C;. If we set

®)  d(C,C)) =c-erf (1 —2confy(;;(Ci,C))),

then there exist points P; in the plane with d(P,, P;) =
d(C;,Cj).

Proof. First note that invertible affine transforms of
x-y plane have no effect on the assumptions of our
vowel space model. Moreover, F;; and confusabil-
ity do not change either. It follows that we may as-
sume without loss of generality that X is the identity
matrix. Then Fj;j o< ||m; —m;|| and we are done by
6)-(7). O

Corollary of the proof of the theorem is that by
making this particular choice of {(s), MDS will re-
cover the original position of m; when X = I. This is
guaranteed, since MDS will find a two-dimensional
configuration of points with given distances, if such
configuration exists.

One practical problem when applying this theo-
rem is that some pairs of vowels on the opposite
sides of IPA chart can be discriminated quite well.
This implies that empirical confusability is very near
0 or even 0, where the inverse error function ap-
proaches infinity quite rapidly. Our suggestion to ad-
dress this problem is to avoid a detour through con-
fusability function, whenever possible. Many popu-
lar classifiers, such as LDA or SVM produce a dis-
criminating function f, whose evaluation is used for
discrimination between classes. Instead of using for-
mula (3), one may evaluate Fisher discriminant of f
which is defined as

(i — 1))*

© DFiSher(Ciacj) = Gi2+012 )

where L, sz are means and variances of f applied
to samples from vowel category Cy. If f is close to
an optimal classifier between C; and C; then one has
Drisher (Ci, Cj) & 2171% and thus one may set

(10) d(C;,C;) = \/lm

Let us make a brief discussion on applicability of
the assumptions A1-A3. The first one is an approx-
imation supported by several studies e.g. [12], [13].
A second one is stronger, and likely implies that
a vowel category contains only one distinguishable
allophone. Finally A3) is the strongest, and likely
to hold only under special circumstances. However
MDS has been shown to produce phonetically mean-
ingful results even in human trials under a lot of sub-
jectivity. Thus even if A1-A3 are not perfectly sat-
isfied, we may expect that using root of Fisher dis-
criminant for vowel category distance function will
yield valuable insights of the vowel space.



Figure 1: Result of Experiments 1 (left) and 2(right). MDS placements that best fit metric defined by (10).
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Figure 2: Empirical confusability of pairwise discriminating functions plotted against the square root of Fisher
discriminant in Experiments 1 (left) and 2 (right). The curves show ideal correspondence predicted by (8)-(10).
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3. EXPERIMENTS

We present the results of three experiments that
outline applicability of the proposed MDS metric.
All three experiments were carried out on vowels
of TIMIT corpus of American English [14]. For
our machine learning algorithm, whose “perceptual
space” we wanted to visualize, we chose LDA. It
is deterministic, fast to compute, resilient to over-

% confusability

+Fisher discriminant

training and optimizes Fisher discriminant, which
we propose to use as MDS distance function (10).

3.1. Experimental details

LDA was trained on 2500 randomly chosen samples
of male speakers from the corpus according to cor-
pus annotation. In all cases the analysis window had
width 512 samples and it was weighted with Han-



ning window.

Experiment 1. The grouping variable was TIMIT
phoneme annotation. Groups correspondings to
diphtongs and ax-h were excluded. The features pro-
vided to LDA were F1 and F2 frequencies in Hertz.
Experiment 2. As in Experiment 1, the group-
ing variable was TIMIT phoneme annotation. Un-
like experiment 1, the features provided to LDA
consisted of log periodogram. More precisely, 256
power spectral values for frequencies k- f, where
k=1,...,256 and f = 16000/512 Hz.
Experiment 3. We considered only samples labeled
‘aa’ or ‘ao’. There were 16 groups, two for each one
of 8 geographical regions of the speaker. The fea-
tures provided to LDA including F1-F4 frequencies
in Hertz, their bandwiths in Hertz, log periodogram
as in Experiment 2, logarithm of total power, and
angles ¢, 0 as defined in [13].

Methods. To carry out the experiments we de-
veloped custom code for R software. The code
depended on packages fftw for Fourier transform,
e1071 for Hanning window, phonTools for formant
identification, and MASS for LDA.

3.2. Discussion of experiments

Experiments 1 and 2 used the same training data,
as well as the same testing data, thus allowing us
to make a direct comparison of the results as pre-
sented in Figure 1. We can see that MDS found
essentially the same configuration of points in the
plane that represents the vowel categories. How-
ever, there are a few pairs of phonemes that have
notably different distances, e.g. axr-er, uh-uw and
ix-th. Larger distances in Experiment 2 may be
caused by extra power information available to the
classifier, unlike in Experiment 1, where power in-
formation is not present. A common feature of the
results is the emergence of distinctive aa-ao-uw-ux-
iy-ae hexagon, contrasting with vowel trapezoid of
IPA chart.

One may question applicability of Fisher discrim-
inant in view of rather weak adherence of distri-
bution of formants to homoscedasticity assumption
A3). To that end we plotted confusability against
the square root of Fisher discriminant in Figure 2
and found generally good correspondence of the two
quantities with relationship predicted from (8) and
(10).

In Experiment 3 one may expect that ho-
moscedasticity assumption A3 is much more
strongly satisfied than in experiments 1 and 2, since
we consider the utterances of very similar vowels.
Since finding subtle differences between regional
accents is a rather delicate task we supplied the clas-

sifier with a variety of features as described above.
The result found by MDS (Figure 3) to a large de-
gree mirrors geographical relationships of speakers.

Figure 3: Result of experiment 3. MDS place-
ment based on metric defined by (8). 1=New
England, 2=Northern, 3=North Midland, 4=South
Midland, 5=Southern, 6=New York City, 7=West-
ern, 8=Army Brat)
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4. CONCLUSION

The primary goal of the paper was to argue for a
new metric to visualize perceptual vowel space. We
showed a theoretical argument why and under what
assumptions, the metric defined in (8) is the natural
choice. The most notable feature of the experiments
is the deformation of IPA vowel trapezoid to a “per-
ceptual hexagon”. It would be very interesting to
test if neural correlates of the hexagon exist in the
human brain [15-17].

Compared to F1-F2 plot, the principal advantage
of the new method is that it is able to aggregate many
more dimensions. The downside is the need to sep-
arately interpret phonetical meaning of dimensions
and the inability to visualize any particular vowel
instance in the MDS chart.
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