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Abstract

Necessary and sufficient conditions for feedback passivity
(passifiablity) of nonsquare linear systems published in Rus-
sian and Western literarure are surveyed. New outputG-
passifiability conditions for nonsquare linear systems are given.
The proofs are based on Yakubovich-Kalman-Popov (Kalman-
Yakubovich) lemma.

1 Introduction

During last decade there was a continuing interest inpassifiable
or feedback passivesystems — ones that can be made passive
by means of state or output feedback [1, 2, 3, 4, 5, 6]. Since
passivity of a linear system is equivalent to positive realness of
its transfer function, the linear passifiable (strictly passifiable)
systems were also called “almost positive real” (“almost strictly
positive real”) [7, 8].

For output feedback case necessary and sufficient conditions of
passifiability were suggested in [9, 10] (for SISO systems) and
in [11, 12, 13] for MIMO systems. Note that feedback struc-
tures in [11, 12] and in [13] are different (see also [14]). State
feedback case was considered in [15, 1]. In [16] it was shown
that conditions of strict passifiability for state feedback and out-
put feedback case are the same. In a number of works the prob-
lem of positive real synthesis for systems with feedthrough (rel-
ative degree zero case) was considered, see [17] and references
therein. The obtained results have applications in robust con-
trol [9, 10, 11, 12], adaptive control [8, 20, 13], stabilization of
partially linear cascaded systems [15, 1, 5].

In the Russian literature the problem of feedback design en-
suring strict positive realness was studied still in the 1970s,
see [18] for SIMO systems and [19] for MIMO systems.
The results were systematically applied to adaptive control
[21, 22, 23], to VSS design [24], to synchronization systems
design [25, 26, 27]. The necessary and sufficient conditions
of output strict feedback passivity in [9, 10, 11, 12, 13] are
straightforward consequences of the corresponding results of
[18, 19]. Although the papers [18, 19] (translations from Rus-
sian) were published in the West and some results of [18, 19]
were recalled in [28, 20, 16], these results were somewhat over-
looked in the Western literature.

In this note the main results of [19] giving necessary and suf-
ficient output feedback passivity conditions for nonsquare lin-
ear systems are recalled. Also some new output passifiabil-
ity conditions for nonsquare linear systems are given. Simple
parametrization of a broad subclass of passifying feedbacks is
proposed (see Corollary 2).

Despite common opinion that squaring down preserves all es-
sential properties of the system, see [29], in some cases con-
troller design without squaring down is preferable. Indeed,
it provides designer with more flexibility and ease of inter-
preting the controller parameters. For adaptive control sys-
tems the non-squaring down designs lead to better parameter
convergence: it is known that parameters converge faster and
limit values are smaller [21, 23]. Therefore passification re-
sults given below can be useful for design purposes in various
situations.

The problem is formulated in Section 2 containing also appro-
priate passivity definitions for nonsquare systems. The main
results are presented in Section 3, while the proofs are given in
the Section 4.

2 Problem statement

Consider a linear system

ẋ = Ax+Bu, y = Cx, (1)

wherex ∈ Rn, u ∈ Rm, y ∈ Rl, A,B,C are matrices of
appropriate size. Letχ(λ) = C(In−A)−1B be transfer matrix
of the system (1) andG be a prespecifiedm× l-matrix.

Definition 1. System (1) is calledG-passiveif there exists a
nonegativen× n-matrixP = P T ≥ 0 such that

V (x) ≤ V (x0) +

t∫
0

uT (t)Gy(t) dt (2)

for any solution of system (1) satisfyingx(0) = x0, x(t) = x,
whereV (x) = xTPx.

Definition 2. System (1) is calledstrictly G-passive, if there
exist a positive definiten × n-matrix H = HT > 0 and a
positive number% > 0 such that

V (x) ≤ V (x0) +

t∫
0

[
u(t)TGy(t)− %|x|2

]
dt (3)



for any solution of system (1) satisfyingx(0) = x0, x(t) = x,
whereV (x) = xTHx.

Obviously, if l = m andG = Im is identity matrix, then
G-passivity coincides with conventional passivity. This paper
is concerned with studying only strict versions ofG-passivity
property.

Note that due to the smoothness of the system (1) and function
V (x), the integral inequalities (2), (3) are equivalent to their
differential forms, e.g. (3) is equivalent to fullfillment of the
differential dissipation inequality

2xTH(Ax+Bu) ≤ uTGy − %|x|2 (4)

for some% > 0 and allx ∈ Rn, u ∈ Rm. In its turn, the dissi-
pation inequality (4) is, obviously, equivalent to the following
matrix relations

HA+ATH < 0, HB = CTGT . (5)

The solvability conditions for 5 are given by the seminal
Yakubovich–Kalman–Popov or Kalman–Yakubovich lemma
(for this special case also called positive real lemma)

Consider the followingpassification problems.

Problem A. Find conditions of existence ofm × l-matrix K
andm ×m-matrixL such that the system (1) with the output
feedback

u = Ky + Lv, (6)

(wherev ∈ Rm is new input,detL 6= 0 ) is strictlyG-passive.

Problem B. Find conditions of existence ofl × m-matrix K
such that the system (1) with the output feedback (6) is strictly
G-passive with fixed matrixL.

Related problems for square MIMO systems were considered
in [11, 12, 14, 13]. In [11, 12] the special caseL = K was con-
sidered, while configuration in the papers [14, 13] corresponds
to the caseL = I.

In this paper the problems A and B for nonsquare systems
(l 6= m) are considered. Note that this case cannot be reduced
to the “square” case by the “squaring down” procedure, see,
e.g., [29], because intially the unknown matrixK is rectangu-
lar, while squaring it down will reduce the number of construc-
tive parameters. Remaining initial number of parameter is im-
portant, e.g. for adaptive control, where reducing the number
of adjustable parameters may decrease transient performance
of the adaptive systems, see [21, 23]. It follows from the main
results however (see next section) that squaring down by intro-
ducing new outputy = Gy ∈ Rm does not change the passifi-
ability conditions, while the passifying feedback can always be
found in the formu = Ky + Lv.

3 Main results

In order to formulate the solutions to the above problems, in-
troduce the following notations:

δ(λ) = det(λIn −A), χ(λ) = C∗(λIn −A)−1B

δ(λ,K)=det[λIn−A(K)], χ(λ,K)=C∗[λIn−A(K)]−1B

ϕ(λ)=δ(λ) detG∗χ(λ), Γ= lim
λ→∞

λG∗χ(λ).

Obviously,δ(λ,K) andχ(λ,K) are characteristic polynomial
and transfer matrix, respectively, of the system (1) closed with
the feedbacku = Ky + v. It can be shown (see below Lemma
1) thatϕ(λ) is a polynomial of degreen − m, invariant with
respect to feedback transformation: substitutionδ(λ,K) and
χ(λ,K) instead ofδ(λ) andχ(λ). SinceΓ = G∗C∗B, the
m ×m matrix Γ is also invariant with respect to the feedback
transformation. Moreover, the following identities are valid:

δ(λ,K) = δ(λ) det[Im −K∗χ(λ)], (7)

χ(λ,K) = χ(λ)[Im −K∗χ(λ)]−1. (8)

Definition 3. The system (1) is calledminimum phaseif the
polynomialϕ(λ) is Hurwitz (its zeros belong to the open left
half-plane). The (square) system is calledstrictly minimum
phaseif it is minimum phase anddetCB 6= 0, andhyper min-
imum phaseif it is minimum phase andCB = (CB)T > 0.

Assume thatrankB = m which means just that there is no re-
dundancy in inputs. The following two theorems give solutions
to the Problems A, B.

Theorem 1. The system (1) is strictlyG-passifiable by out-
put feedback (6) if and only if it is minimum-phase and
det(GCB) 6= 0. (In other words, if and only if the transfer
functionGχ(λ) is strictly minimum-phase).

Theorem 2. The system (1) is strictlyG-passifiable by output
feedback (6) with fixed matrixL if and only if it is minimum-
phase andD = DT > 0, whereD = GCBL. (In other words,
if and only if the transfer functionGχ(λ)L is hyper-minimum-
phase).

Consider the following problem. Given complex-valued matri-
cesA, B, C, G, R of the dimensionsn × n, n × m, n × l,
l ×m andn × n, respectively (m ≤ n, l ≤ n). Additionally
assume thatR = R∗ ≥ 01. It is required to establish existence
conditions for a Hermitiann × n matrixH = H∗ > 0 and a
complex valuedl ×m matrixK such that

HA(K) +A(K)∗H +R < 0, (9)

HB = CG (10)

where
A(K) = A+BK∗C∗. (11)

The case when all the matricesA,B,C,G,R are real valued
will be called thereal case.

1R∗ means Hermitian-conjugate matrix, i.e., transposed matrix with com-
plex conjugate elements; ifR is a real valued matrix, thenR∗ = RT



Proofs of the Theorems 1, 2 heavily rely on the following auxil-
lary statement providing solvability conditions for correspond-
ing matrix relations: inequality (9) and equalities (10), (11).

Theorem 3.For the existence of the matricesH = H∗ > 0,K
satisfying relations (9), (10), (11) and being real valued in the
real case, it is sufficient (and, whenrank(B) = m, it is also
necessary) that the matrixG∗χ(λ) be hyper minimum phase.

Obviously, relations (9), (10), (11) for fixedK coincide with
the linear matrix inequalities (LMI) (4) appearing in a version
of Yakubovich-Kalman-Popov lemma. Therefore the Theorem
3 deals with the existence of a feedback rendering the sys-
tem satisfy conditions of Yakubovich-Kalman-Popov lemma.
In other words, the Theorem 3 can be called theFeedback
Yakubovich-Kalman-Popov lemma. Note also that the inequali-
ties (9) arebilinear matrix inequalities and the problem of their
solvability is in generalNP -hard. However for the above spe-
cial case the solvability conditions for (9), (10), (11) are simple
and constructive that is seen from the Theorem 3 formulation.

4 Proof of main results

Before proving the theorem, we formulate several auxiliary
lemmas. Their proofs can be found in [19, 6]

Lemma 1. Let

α(λ) = (λIn −A)−1δ(λ),

p, q be anyn × m matrices andΣ(λ) = p∗α(λ)q. Then
detΣ(λ) = δm−1(λ)σ(λ), whereσ(λ) is a polynomial of
degree no higher thenn − m with the leading coefficient
λn−m det p∗q. Besides,σ(λ) does not change with substitu-
tionA+ qr∗ instead ofA, wherer is anyn×m matrix.

Corollary 1. The polynomial

ϕ(λ) = δ(λ)G∗χ(λ) = G∗C∗
[
(λIn −A)−1δ(λ)

]
B,

defined above, has the leading coefficient

λn−m detG∗C∗B and is invariant under “feedback transfor-
mation” of the formA→ A(K) = A+ BK∗C∗.

Lemma 2. Any kth-order minor of the matrixΣ(λ), defined
in Lemma 1, is divisible byδ(λ)k−1, with the fraction being a
polynomial of degree not exceedingn − k. Its leading coeffi-
cient is equal to the corresponding minor of the matrixp∗q.

Lemma 3. Let the polynomialPε(λ) have the form

Pε(λ) = λn−mQε(λ) +Rε(λ),

where

Qε(λ)=
m∑
k=0

(qk+q′k(ε))ε
kλk, Rε(λ)=

n−m−1∑
k=0

(rk+r′k(ε))λ
k,

andq′k(ε) = O(ε), r′k(ε) = O(ε) for ε → 0. Let, additionally,
the polynomials

Q(λ) =
m∑
k=0

qkλ
k, R(λ) = q0λ

n−m +
n−m−1∑
k=0

rkλ
k

be Hurwitz. Then the polynomialPε(λ) is Hurwitz for all suf-
ficiently smallε > 0.

Lemma 4. LetΦ(ω), ω ∈ R1 be complex valuedm×mmatrix
satisfying for anyx 6= 0 ω ∈ R1 the following inequality:
Rex∗Φ(ω)x > 0. Then

|∆ arg detΦ(ω)| ≤ mπ,

where

∆ arg Ψ(ω) = lim
ω→+∞

[ arg Ψ(ω)− arg Ψ(−ω)].

Finally, we will need a version of the Yakubovich-Kalman-
Popov lemma which can be easily derived from the results of
[31].

Lemma 5. LetA0, R,B,Q be matrices of dimensionsn × n,
n×n, n×m, n×m respectively, andR = R∗ ≥ 0, rankB =
m. Let2

Π(λ) = 2 ReQ(λIn −A0)−1B−
B∗(λIn −A0)∗−1R(λIn −A0)−1B.

(12)

For the existence ofn× n matrixH = H∗ > 0 such that

HA0 +A0H +R < 0, HB = Q (13)

which is real valued in the real case, the following conditions
are necessary and sufficient:

i) det(λIn −A0) is a Hurwitz polynomial;

ii) Π(iω) > 0 ∀ω ∈ R1,

iii) lim
ω→∞

ω2Π(iω) > 0.

Proof of Theorem 1.First, let us prove the sufficiency. To
this end, choose anl ×m matrixK0 such that matricesA0 =
A+BK∗

0C
∗,Q = CG satisfy conditions i), ii), iii) of Lemma

5. In particular,K0 can be chosen asK0 = −kG, wherek > 0
is sufficiently large (this guarantees thatK0 is real valued in the
real case). For the sake of notational convenience we denote

δk(λ)=δ(λ− kG), Ak=A− kBG∗C∗, χk(λ)=χ(λ− kG).

To check part(i) we use the equality (7) which means that

δk(λ) =
km

δ(λ)m−1
det

[
δ(λ)
k

Im +G∗a(λ)
]
, (14)

wherea(λ) = χ(λ)δ(λ). Expanding the determinant in the
right hand part of expression(14) we obtain

δk(λ) = km

δ(λ)m−1

[
δ(λ)m

km + ϕ1(λ) δ(λ)m−1

km−1 + · · ·

+ϕm−1(λ) δ(λ)
k + ϕm(λ)

]
,

whereϕ1(λ), . . . , ϕm−1(λ), ϕm(λ) = detG∗a(λ) are the co-
efficients of the characteristic polynomial of the matrixGa(λ).

2NotationRe K stands for the Hermitian part of the matrix:Re K = (K+
K∗)/2.



By Lemma 2ϕk(λ) = δ(λ)k−1ψk(λ), whereψk(λ is a poly-
nomial of degreen − k, the leading coefficient of whichψk is
equal to the sum of principal minors of orderk for the matrix
G∗C∗B (k = 1, . . . ,m).

Therefore

1
km δk(λ) = δ(λ)

km + ψ1(λ)
km−1 + · · ·+ ψm−1(λ)

k + ψm(λ) =
λn−m

[ (
λ
k

)m
+

(
λ
k

)m−1 (
ψ1 +O

(
1
k

))
+ . . .

+
(
λ
k

) (
ψm−1 +O

(
1
k

)) ]
+ ψm(λ) + ψ(λ, k),

whereψ(λ, k) is some polynomial of degree not higher then
n−m with coefficients of orderO(1/k) ask →∞. Applying
Lemma 3 forε = 1/k, we obtain that the polynomialδk(λ) is
Hurwitz for sufficiently largek, if the following polynomials
are also Hurwitz

Q(λ) = λm +
m−1∑
k=0

ψkλ
k, R(λ) = ψm(λ).

However,Q(λ) andR(λ) are Hurwitz by assumptions of the
theorem since

Q(λ) = det(λIm +G∗C∗B) = det(λIm + Γ),

while R(λ) = ϕ(λ). Thus the part(i) is valid for k > k1 and
some positive numberk1.

To prove part(ii) , let us rewrite it in the following form:

2 ReG∗χk(iω) > B∗(−iωIn −A∗k)
−1R(iωIn −Ak)−1B.

(15)
By virtue of invariance of the polynomialϕ(λ) for anyk, we
conclude thatdetG∗χk(λ) = ϕ(λ)/δk(λ). In accordance with
the conditions of the theorem, the polynomialϕ(λ) is Hurwitz,
and, hence,

detG∗χk(iω) 6= 0 ∀ω ∈ R1.

Therefore for anyω ∈ R1 we obtain

ReG∗χk(iω) = G∗χk(iω)]∗Re [G∗χk(iω)]−1G∗χk(iω).

In view of the latter equation, inequality (15) is equivalent to
the following inequality

2 Re [G∗χk(iω)]−1 >
[χ∗k(iω)G]−1B∗(−iωIn−Ak)−1B[G∗χk(iω)]−1.

(16)

However

[G∗χk(λ)]−1 = kIm + [G∗χ(λ)]−1.

Therefore it is sufficient to show thatRe [G∗χ(iω)]−1 and
the right-hand side of (16) is bounded forω ∈ R1. Since
detG∗χ(iω) = ϕ(iω)/δ(iω) for ω ∈ R1, the matrix
[G∗χ(iω)]−1 is bounded for any bounded change ofω.

Now let us show thatRe [Gχ(iω)]−1 is bounded forω → ±∞.
By virtue of the conditions of the theorem,Γ = Γ∗ > 0, where
Γ = G∗C∗B. Therefore

Re [G∗χ(iω)]−1 =Re iω[iωG∗χ(iω)]−1 =Re iω
[
Γ−1+

O(ε−1)
]
= iω[Γ−1+(Γ−1)∗] +O(1) = O(1) for ω →±∞.

To end the proof we need to show the boundedness of the right-
hand side of (16) forω → ±∞ (for the notational convenience
we denote the right hand side of (16) asψk(ω)). For k > k1

the matrix functionψk(·) is continuous, and, hence, bounded
on any bounded set. Let us show that for anyk there exists a
finite limit lim

ω→±∞
ψk(ω). Let Bλ = (λIn − Ak)−1B. Then

Bλ = B/λ+O(1/|λ|2) for λ→∞, and, hence,

lim
ω→±∞

Biω[G∗C∗Biω]−1 = B[G∗C∗B]−1.

Therefore there exists a finite limit

lim
ω→±∞

ψk(ω) = lim
ω→±∞

[B∗iωCG]−1B∗iωRBiω[G∗C∗Biω]−1

= [B∗CG]−1B∗RB[G∗C∗B]−1.

Thus, part(ii) of Lemma 5 is valid fork > k2 and some posi-
tive numberk2 > k1 > 0.

Finally, the validity of part(iii) for sufficiently largek > 0
follows from the following relationships which is easy to check

lim
ω→∞

ω2Π(iω) = −2 ReG∗C∗AkB −B∗RB

= −2 ReG∗C∗AB −B∗RB + 2k[G∗C∗B]2.

Thus the sufficiency part of the theorem is proved. Let us prove
its necessity. Let relationships (9), (10), (11) be fulfilled for
someH0 = H∗

0 > 0 andK0. By Lemma 5 the polynomial
δ0(λ) = det(λIn −A(K0)) is Hurwitz andReG∗χ0(iω) > 0
for anyω ∈ R1, whereχ0(λ) = C∗[λIn − A(K0)]−1B. Due
to the invariance of the polynomialϕ(λ) we obtain

ϕ(λ) = δ0(λ) detG∗χ0(λ).

Calculating the increment of the argument forλ = iω, where
ω varies from−∞ to +∞ for both sides of this equality, we
have

∆ argϕ(iω) = nπ + ∆ arg detG∗χ0(iω).

By Lemma 4 we obtain∆ argϕ(iω) ≥ (n − m)π. However
ϕ(λ) is a polynomial of degreen−m with the leading coeffi-
cientλn−m det Γ, whereΓ = G∗C∗B (see Lemma 1). There-
fore |∆ argϕ(iω)| ≤ (n−m)π, and∆ argϕ(iω) = (n−m)π.
Henceϕ(λ) is Hurwitz, anddet Γ > 0.

It remains to show thatΓ = Γ∗ ≥ 0. By Lemma 5

lim
ω→∞

ω2 ReG∗χ0(iω) =

lim
ω→∞

Re [iωG∗C∗B −G∗C∗A(K0)B +O(1/|ω|)] =

lim
ω→∞

iω[Γ− Γ∗]− ReG∗C∗A(K0)B > 0,

and, hence,Γ = Γ∗. It is worth noting that the relationships
(9), (10), (11) are, obviously, valid if we substituteA(K0) −
kIn, (k > 0) instead ofA(K0). Applying Lemma 5 again, we
conclude that

−G∗C∗A(K0) +B + kΓ > 0



for anyk > 0. ThereforeΓ ≥ 0, which completes the proof of
the theorem.

Proof of the Theorems 1, 2. Proof of the main results is now
straightforward. If the matrixL is fixed, then the strict out-
put passifiability is equivalent to existence of matricesK,H,
satisfying relations (9) - (11) whereB is replaced byBL. By
Theorem 3, it is equivalent to the hyper-minimum-phaseness
of the transfer matrixGχ(λ)L, i.e. to the minimum phase-
ness and fulfillment ofD = DT > 0, whereD = GCBL.
If matrix L is subject to choice, we can ensure the relation
D = DT > 0 as soon as system is strictly minimum phase,
i.e. if det(GCB) 6= 0. In this case the simplest choice is
L = (GCB)−1.

Corollary 2. The set of matricesK satisfying (9) — (11) i.e.
passifying the initial system contains the subset of matrices of
formK = −αG, where

α ≥ α0 = sup
ω∈R1

λmin[GW (jω)]−1. (17)

5 Conclusions

The paper recalls and clarifies some interrelations between pas-
sification of nonsquare linear systems and solvability of a class
of bilinear matrix inequalities. The presented passification re-
sults can be useful for design purposes in various situations.
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