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Keywords: Passification, Linear systems, Yakubovichi this note the main results of [19] giving necessary and suf-
Kalman-Popov lemma. ficient output feedback passivity conditions for nonsquare lin-
ear systems are recalled. Also some new output passifiabil-
Abstract ity conditions for nonsquare linear systems are given. Simple
parametrization of a broad subclass of passifying feedbacks is
Necessary and sufficient conditions for feedback passivigyoposed (see Corollary 2).

(passifiablity) of nonsquare linear systems published in RL|§éspite common opinion that squaring down preserves all es-
sian and Westem literarure are surveyed. New outut sential properties of the system, see [29], in some cases con-

passifiability conditions fornonsqu_are linear systems are giv%qj”er design without squaring down is preferable. Indeed,
The proofs are based on Yakubovich-Kalman-Popov (Kalmgp-oyides designer with more flexibility and ease of inter-

Yakubovich) lemma. preting the controller parameters. For adaptive control sys-
tems the non-squaring down designs lead to better parameter
1 Introduction convergence: it is known that parameters converge faster and

_ o o limit values are smaller [21, 23]. Therefore passification re-
During last decade there was a continuing interepéissifiable  gits given below can be useful for design purposes in various
or feedback passiveystems — ones that can be made passi¥gations.

by means of state or output feedback [1, 2, 3, 4, 5, 6]. Since

passivity of a linear system is equivalent to positive realness g€ problem is formulated in Section 2 containing also appro-
its transfer function, the linear passifiable (strictly passifiablgyiate passivity definitions for nonsquare systems. The main
systems were also called “almost positive real” (“almost strictf@sults are presented in Section 3, while the proofs are given in
positive real”) [7, 8]. the Section 4.

For output feedback case necessary and sufficient conditions of
passifiability were suggested in [9, 10] (for SISO systems) a Problem statement

in [11, 12, 13] for MIMO systems. Note that feedback strugs . <ider a linear system

tures in [11, 12] and in [13] are different (see also [14]). State

feedback case was considered in [15, 1]. In [16] it was shown i = Az + Bu, y=Cuz, (1)
that conditions of strict passifiability for state feedback and out-

put feedback case are the same. In a number of works the prgherez € R, v € R™, y € R, A, B,C are matrices of
lem of positive real synthesis for systems with feedthrough (reppropriate size. Let(\) = C(I,, — A)~! B be transfer matrix
ative degree zero case) was considered, see [17] and referenéése system (1) and' be a prespecifieeh x I-matrix.
therein. The obtained results have applications in robust C(%rgm-f. ition 1. S 1) led- iveif th .

trol [9, 10, 11, 12], adaptive control [8, 20, 13], stabilization o € |n|t|op - System .( ) is caTe passiverf there exists a
partially linear cascaded systems [15, 1, 5]. nonegativen x n-matrix P = P* > 0 such that

In the Russian literature the problem of feedback design en- p

suring strict positive realness was studied still in the 1970s, V(z) < V(zo) +/uT(t)Gy(t) dt (2
see [18] for SIMO systems and [19] for MIMO systems. 0

The results were systematically applied to adaptive control

[21, 22, 23], to VSS design [24], to synchronization systent@r any solution of system (1) satisfying(0) = o, z(t) = «,
design [25, 26, 27]. The necessary and sufficient conditiow§ereV (z) = z” Px.

of output strict feedback passivity in [9, 10, 11, 12, 13] arigefinition 2. System (1) is calledtrictly G-passive if there

straightforward consequences of the corresponding results:9ft 4 positive definiter x n-matrix H = H”™ > 0 and a
[18, 19]. Although the papers [18, 19] (translations from Rugyysitive numbep > 0 such that

sian) were published in the West and some results of [18, 19]

were recalled in [28, 20, 16], these results were somewhat over- ¢

looked in the Western literature. V(x) < V(o) +/ [u(t)"Gy(t) — g|x|2] dt 3)
0



for any solution of system (1) satisfying0) = zo, z(t) = =,

whereV (z) = 2" Hzx. ) )
Obviously, ifl = m andG = I,,, is identity matrix, then OA) = detMn = A), - x(A) = C*(An = A)7B
G-passivity coincides with conventional passivity. This papego\ K)=det[M, — A(K)], x(\, K)=C*[\[,— A(K)]"'B
is concerned with studying only strict versions@fpassivity ’ " ' ’ "

property. Pp(N)=0(\)det G*x(N), F:Ahm AG*x(N).

Note that due to the smoothness of the system (1) and funct

. ; " . Bviously,é()\, K) andy(, K) are characteristic polynomial
V{z), the integral inequalities (2), (3) are equivalent to thei;?nd transfer matrix, respectively, of the system (1) closed with

3:23:232: (fj?srrsr:ps)at?o% in(gg]lljzl?tguwalent to fullfillment of thethe feedback. = Ky + v. It can be shown (see below Lemma
1) thatp()\) is a polynomial of degree — m, invariant with
227 H(Az + Bu) < u™Gy — olz|? (4) respect to feedback transformation: substituddh, K) and
- X(A, K) instead of§(A\) andx(A). Sincel' = G*C*B, the
for somep > 0 and allz € R”,u € R™. In its turn, the dissi- 77 X ™ matrix I" is also invariant with respect to the feedback
pation inequality (4) is, obviously, equivalent to the fouowindransformatlon. Moreover, the following identities are valid:
matrix relations
5()‘7K) = 5(/\) det[lm - K*X()‘)]v (7)
HA+ A"H <0, HB=C"G". (5)
X()‘7K) = X(/\)[Im - K*X(/\)}_l' (8)
The solvability conditions for 5 are given by the seminal
Yakubovich—Kalman—Popov or Kalman-Yakubovich lemmRefinition 3. The system (1) is callechinimum phaséf the
(for this special case also called positive real lemma) polynomial p()) is Hurwitz (its zeros belong to the open left
half-plane). The (square) system is calkdctly minimum
phasef it is minimum phase andet C'B # 0, andhyper min-

Problem A Find conditions of existence ofi x I-matrix K imum phaséf it is minimum phase and’B = (CB)" > 0.
andm x m-matrix L such that the system (1) with the outpul g, me thatank B = m which means just that there is no re-

feedback dundancy in inputs. The following two theorems give solutions
u=Ky+ Lv, (6)  to the Problems A, B.

(wherev € R™ is new inputdet L # 0) is strictly G-passive. Theorem 1. The system (1) is strictlgz-passifiable by out-
put feedback (6) if and only if it is minimum-phase and
t(GCB) # 0. (In other words, if and only if the transfer

anctionGx () is strictly minimum-phase).

Consider the followingpassification problems

Problem B Find conditions of existence dfx m-matrix K
such that the system (1) with the output feedback (6) is stric
G-passive with fixed matrix.

Related problems for square MIMO systems were consideryaeorem 2. Th? sy;tem (1) i_S s_trictl@-pass_if!aple '?y_"”tp“t
in[11, 12, 14, 13]. In [11, 12] the special cabe- K was con- feedback (6) with fixed matrik if and only if it is minimum-

sidered, while configuration in the papers [14, 13] correspon@gase and? = D" >0, where_D — GCB.L' (In Othef vyords,
to the casd, — I. if and only if the transfer functiot?x (\) L is hyper-minimum-

phase).
In this paper the problems A and B for nonsquare systems . . . .
(# m)parz considzred. Note that this case canqnot be ryeduge%lqs'der the following proplem. leen complex-valued matri-
to the “square” case by the “squaring down” procedure, s&&S4: B €, G, I of the dimensions, x n, n x m, n x 1,
e.g., [29], because intially the unknown matfiis rectangu- * % "7 andn xn, r*espe(ltnve_lym < n, [ < n). Additionally
lar, while squaring it down will reduce the number of constry@SSUme thak = R* > _O_ - Itis requwe_d to eStaki“Sh existence
tive parameters. Remaining initial number of parameter is irﬁ(-)ndltlons fora Hermltlam x n matrix H = H* > 0 anda
portant, e.g. for adaptive control, where reducing the numti@mplex valued x m matrix K such that
of adjustable parameters may decrease transient performance

of the adaptive systems, see [21, 23]. It follows from the main HA(K) + A(K)"H + R <0, ©)
results however (see next section) that squaring down by intro- B —CaG (10)
ducing new outpuy = Gy € R™ does not change the passifi- -

ability conditions, while the passifying feedback can always kghere

found in the formu = K7 + Lv. A(K) = A+ BK*C*. (11)

The case when all the matrices B, C, G, R are real valued
will be called thereal case

In order to formu'f"\te the 39|Ut|0ns to the above problems, iN- 1z« means Hermitian-conjugate matrix, i.e., transposed matrix with com-
troduce the following notations: plex conjugate elements; R is a real valued matrix, theR* = RT

3 Mainresults




Proofs of the Theorems 1, 2 heavily rely on the following auxibe Hurwitz. Then the polynomidl. (1)) is Hurwitz for all suf-
lary statement providing solvability conditions for correspondiciently smalle > 0.

ing matrix relations: inequality (9) and equalities (10), (11). Lemmad. Letd(w), w € R' be complex valueh x m matrix

Theorem 3. For the existence of the matricés= H* > 0, K satisfying for anyz # 0w € R' the following inequality:
satisfying relations (9), (10), (11) and being real valued in thBe 2*®(w)z > 0. Then

real case, it is sufficient (and, wheank(B) = m, itis also

necessary) that the matriZ*y(\) be hyper minimum phase. |Aarg det ®(w)| < m,

Obviously, relations (9), (10), (11) for fixeH coincide with where

the linear matrix inequalities (LMI) (4) appearing in a version

of Yakubovich-Kalman-Popov lemma. Therefore the Theorem ~ Aarg¥(w) = wﬁrfoo[arg V(W) — arg W(-w)].

3 deals with the existence of a feedback rendering the sys-

tem satisfy conditions of Yakubovich-Kalman-Popov lemma.

In other words, the Theorem 3 can be called Bamdback Finally, we will need a version of the Yakubovich-Kalman-
Yakubovich-Kalman-Popov lemimisote also that the inequali- Popov lemma which can be easily derived from the results of
ties (9) arebilinear matrix inequalities and the problem of theif31].

s_olvab|I|ty sin gene_ur_aJ’VP-hgr_d. However for the above P emma 5. Let Ao, R, B, @ be matrices of dimensions x n,

cial case the solvability conditions for (9), (10), (11) are simplée X . -

. : X, nx m,n X mrespectively, an®® = R* > 0, rank B =

and constructive that is seen from the Theorem 3 formulatlog]h Let?
II(A\) = 2Re Q(\I,, — Ag) "' B—

B*(\,, — Ag)* 'R(\I,, — Ap)~'B.

Before proving the theorem, we formulate several auxiliar _ . .

lemmas. Their proofs can be found in [19, 6] I¥or the existence of x n matrixH = H

Lemma 1 Let HAy+AoH+R<0, HB=Q (13)

4 Proof of main results (12)

> 0 such that

a(\) = (ML, — A)716(N), which is real valued in the real case, the following conditions

p,q be anyn x m matrices andX(\) = p*a(A)g. Then are necessary and sufficient:
detX(\) = 6™ 1(N)o()), wherea()) is a polynomial of i) det(AI,, — Ay) is a Hurwitz polynomial;
degree no higher them — m with the leading coefficient .. . 1
A"~™ det p*q. Besidesg(\) does not change with substitu-") M(iw) >0 WweR,

tion A + gr* instead ofA, wherer is anyn x m matrix. i) lim w?M(iw) > 0.
w—00

Corollary 1. The polynomial Proof of Theorem 1.First, let us prove the sufficiency. To

e(A) = 6(NG*X(\) = G*C* [(AL, — A)'6(\)] B, this end, choose ahnx m matrix K, such that matriced, =

) ) o A+ BKjC*, Q = CG satisfy conditions i), ii), iif) of Lemma
defined above, has the leading coefficient 5. In particular,K, can be chosen &, = —kG, wherek > 0
A" det *C* B and is invariant under “feedback transfor- iS sufficiently large (this guarantees thég is real valued in the
mation” of the formA — A(K) = A+ BK*C*. real case). For the sake of notational convenience we denote

Lemma 2. Any kth-order minor of the matrix:()\), defined 65 (A\)=0(A—kG), Ax=A—kBG*C”*, x(A\)=x(A—kG).
in Lemma 1, is divisible by(A\)*—1, with the fraction being a ] ] .
polynomial of degree not exceeding- k. Its leading coeffi- 10 check parti) we use the equality (7) which means that

cient is equal to the corresponding minor of the magriy. Em 5(\)
o(A) = S()m1 k

det[ Im—&-G*a()\)}, (14)

Lemma 3. Let the polynomiaP, (\) have the form
Pe(A) = N""Qc(N) + Re(M), wherea()\) = x(A\)d()\). Expanding the determinant in the
where right hand part of expression(14) we obtain
m n—m—1 o k™ S()™ 6(}\)m—1
QN =@+ ()N, Ri(N)= 37 (re+ri(e)A’, () = gl | S + () o
k=0 k=0 +<pm_1(/\)¥ + @m(A)},
andg; () = O(e), r.(e) = O(e) for e — 0. Let, additionally,

the polynomials wherep: (A), ..., pm—1(A), om(A) = det G*a(A) are the co-
. efficients of the characteristic polynomial of the matfix(\).

rk)\’f °NotationRe K stands for the Hermitian part of the matriRe K = (K +
K*)/2.

n

QN =D @M, RN =g \""+ >
k=0 k=0



By Lemma 2, (A\) = 6(N\)F 1 (N), whereyy () is a poly-
nomial of degreen — k, the leading coefficient of whiclp, is
equal to the sum of principal minors of orderfor the matrix
G*C*B(k=1,...,m).

Therefore
W[(%) + (2) o)+
+ () W1+ 0 (1) |+ md) + (A ),

To end the proof we need to show the boundedness of the right-
hand side of (16) fow — 400 (for the notational convenience
we denote the right hand side of (16)@g(w)). Fork > k;
the matrix functionyy(-) is continuous, and, hence, bounded
on any bounded set. Let us show that for @nthere exists a
finite limit Jdim Y (w). Let By = (A, — Ax)"!B. Then

By = B/A+ O(1/|A\?) for A\ — oo, and, hence,

hm Bi,|G*C* By, |7t =

w—+oo

B|G*C*B] !

wherey()\, k) is some polynomial of degree not higher ther "erefore there exists afinite limit

n — m with coefficients of orde©(1/k) ask — oco. Applying
Lemma 3 fore = 1/k, we obtain that the polynomial, (1)) is

Hurwitz for sufficiently largek, if the following polynomials

are also Hurwitz

m—1
= A" 4+ Z '(/}k)\ka

k=0

QM) R(\) = thm(N).

m (W) = CG|™'B;,RB,[G*C*B;,,) "

lim [B;
w—+o0 —+o0

= [B*CG] 'B*RB[G*C*B]™*

Thus, pari(ii) of Lemma 5 is valid fork > k, and some posi-
tive numberks > k; > 0.

Finally, the validity of part(iii) for sufficiently largek > 0

However,Q(A\) and R(\) are Hurwitz by assumptions of thefollows from the following relationships which is easy to check

theorem since
Q(\) = det(M,, + G*C*B) = det(A],, + ),

while R(A) = ¢(A). Thus the pari) is valid for &k > k; and
some positive numbeék; .

To prove par(ii), let us rewrite it in the following form:

2ReG*xy (iw) > B*(—iwl, — A;) ' R(iwl, — Ay) ' B.
(15)
By virtue of invariance of the polynomiab(\) for any k, we
conclude thaflet G*xx(\) =
the conditions of the theorem, the polynomjgh) is Hurwitz,
and, hence,

det G*xp(iw) #0 Vw € R
Therefore for any € R' we obtain
G X (iw)]" Re [G"x (iw)] ™

Re G* x,(iw) = LG i (iw).

In view of the latter equation, inequality (15) is equivalent t

the following inequality

2Re [G*x(iw)] 71 >

[¢: (i) G B iwl, — A )~ BIG xu(iw) . (1O
However
(G Xk (NI = Kl + [GT (V)]
Therefore it is sufficient to show thdte [G*x(iw)]~! and
the right-hand side of (16) is bounded for ¢ R!. Since

det G*x(iw) = ¢(iw)/d(iw) for w € R', the matrix
[G*x(iw)]~! is bounded for any bounded change.of
Now let us show thaRe [Gx (iw)] ! is bounded fow — +oo.
By virtue of the conditions of the theoredi,= I'* > 0, where
I' = G*C*B. Therefore
Re [G*x(iw)] "t =Reiw[iwG*x (iw)] ~*
O(e™ )] =iw[l ' +(T" )T+ 0(1)

=Reiw[[ 4+
= O(1) for w — 40.

lim w?M(iw) = —2ReG*C*AyB — B*RB

= —2ReG*C*AB — B*RB + 2k[G*C*B)?.

Thus the sufficiency part of the theorem is proved. Let us prove
its necessity. Let relationships (9), (10), (11) be fulfilled for
someH, = H§ > 0 andK,. By Lemma 5 the polynomial
do(A) = det(AI,, — A(K)p)) is Hurwitz andRe G* x(iw) > 0

for anyw € RY, wherexo(\) = C*[\,, — A(K,)]~'B. Due

©(\)/8x()). In accordance with to the invariance of the polynomial(\) we obtain

(N) = 6o(A) det G*xo(N).

Calculating the increment of the argument for= iw, where
w varies from—oo to +oo for both sides of this equality, we
have

Aarg p(iw) = nm + Aarg det G o (iw).

%y Lemma 4 we obtaim\ arg p(iw) > (n — m)w. However
() is a polynomial of degree — m with the leading coeffi-
cient A"~ det I", wherel' = G*C* B (see Lemma 1). There-
fore|A arg p(iw)| < (n—m)m, andA arg p(iw) = (n—m).
Hencep(\) is Hurwitz, anddet T > 0.

It remains to show thaf = I'* > 0. By Lemma 5

hm w? Re G*xo(iw) =

i Re [iwG*C*B — G*C*A(K)B + O(1/|w]|)] =
lim w[[' = T*] — ReG*C*A(Ky)B > 0,

w—00

and, hencel’ = I'*. It is worth noting that the relationships
(9), (10), (11) are, obviously, valid if we substitutg K) —
kI, (k > 0) instead ofA(K,). Applying Lemma 5 again, we
conclude that

~G*C*A(Ky) + B+ kT >0



foranyk > 0. Thereforel' > 0, which completes the proof of [9] Zeheb A. A sufficient condition for output feedback sta-

the theorem.

Proof of the Theorems 1, 2Proof of the main results is now
straightforward. If the matrix_ is fixed, then the strict out- [10] Steinberg A.

put passifiability is equivalent to existence of matridésH,
satisfying relations (9) - (11) wherB is replaced byB L. By

Theorem 3, it is equivalent to the hyper-minimum-phaseness
of the transfer matrbxG'x(A)L, i.e. to the minimum phase-[11] Gu G. “Stabilizability conditions of multivariable uncer-
ness and fulfilment o = D” > 0, whereD = GCBL.

If matrix L is subject to choice, we can ensure the relation
D = D" > 0 as soon as system is strictly minimum phase,

i.e. if det(GC'B) # 0. In this case the simplest choice i§12] Abdallah C., Dorato P., Karni S. “SPR design using feed-

L=

(GCB)~ L,

Corollary 2. The set of matrice&’ satisfying (9) — (11) i.e. [13]
passifying the initial system contains the subset of matrices 0?
form K = —aG, where

o> ap = sup Amin [GW(]"‘})]_I
wERl

(17)
(14]

5 Conclusions

The paper recalls and clarifies some interrelations between [{?
sification of nonsquare linear systems and solvability of a class

of bilinear matrix inequalities. The presented passification re-
sults can be useful for design purposes in various situations.

(16]
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