ISCA Archive

http://www.isca-speech.org/archive

ESCA Workshop on
Audio-Visual Speech Processing
Rhodes, Greece
September 26-27, 2997

ADAPTIVE DETERMINATION OF AUDIO AND VISUAL WEIGHTS FOR AUTOMATIC
SPEECH RECOGNITION

Alexandrina Rogozan, Paul Deléglise and Mamoun Alissali
Laboratoire d’Informatique de 1’Université du Maine
Université du Maine, 72085 Le Mans Cedex 9, France.
Tel. ++33 (0)2 43 83 38 64, FAX: ++33 (0)2 43 83 38 68, E-mail: afoucaul@lium.univ-lemans.fr

ABSTRACT

This paper deals with adaptive integration of visual in-
formation in an automatic speech recognition system.
Our method consists of attaching a different weight to
each modality involved in the recognition process.
These acoustic and visual weights are adjusted dynami-
cally, manly according to the SNR, which is provided to
the system as a contextual input.

This method is tested on three different audio-visual
CHMMs-based systems. They implement respectively:
the direct identification scheme (DI), the separate identi-
fication scheme (SI) and the hybrid (DI+SI) one. Sys-
tem performances are compared on the same task:
speaker-dependent continuous spelling of French letters.

Results obtained using audio and visual weights dy-
namically adapting to the circumstances are better than
those obtained with equal weights, over different test
condition (clean data and data with artificial noise).

1. INTRODUCTION

Several researchers have already demonstrated,
through their models of automatic audio-visual percep-
tion, the potential use of visual information (mostly lip
shape and movements) to improve accuracy and robust-
ness of speech recognition systems (Adjouani and
Benoit, 1996; Meier ef al., 1996; Silsbee and Su, 1996).

Our own work in this area (Alissali et al., 1996) was
focused on the elaboration of an optimal integration
strategy of audio and visual sources in automatic speech
recognition. The experiments realised under different
test conditions show that a hybrid (DI+SI) identification
model is more promising than the separate identification
and asynchronous integration (SI) or than the direct
integration (DI) and confirm (Robert-Ribes et al., 1996).

However, these results correspond to the empirically-
obtained optimal modality weights, i. e. the acoustic and
visual weights which give the best performances. These
performances underline the importance of the weighting
modality factor in the AV recognition process.

Our acoustic-only system achieved recognition accu-
racy of 90% on clean data, while the visual recogniser
performance does not exceed 44 %. These results prove
that in non-noisy condition, acoustic source is most
reliable and the visual part should be lower in the recog-
nition process. In noisy environment the acoustic system
perform poorly and the visual source becomes necessary.
Thereby, an optimal integration model has to adapt the
relative contribution of each modality according to the
SNR.

On the other hand, since auditory and visual confu-
sion of phonemes are manly independent, the recogni-
tion errors are modality-dependent. By the way, one has
to exploit the auditory and visual confusion for deter-
mining optimal modality weights in order to improve
recognition performance.

This paper focus on adaptive determination of audio
and visual weights manly according to the SNR. This
method is tested on audio-visual systems, which imple-
ment respectively: the direct identification scheme (DI),
the separate identification scheme (SI) and the hybrid
(DI+SI) one.

Generally, AV system performances obtained using
audio and visual weights dynamically adapting to the
circumstances are better than those obtained with equal
weights, over different test condition.

2. SYSTEM DESCRIPTION

The Dbaseline acoustic-only system uses phonemic
CHMMs, where the acoustic observations are composed
of 12 MFCC coefficients, the energy of the analysis
window and their first and second derivatives.

Starting from the basic system, we implement the DI
model by simply concatenating the acoustic and visual
observations in a first AV system. As visual observa-
tion, we use parameters representing the internal lip
shape (height, width and area), obtained by image proc-
essing (Lallouache, 1991), and their first and second
derivatives.

In the second AV system developed according to the
SI model, the audio and visual observations are proc-
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essed in two separate communicating components.
Since the visual component is only used to rescore solu-
tions proposed by the acoustic one, the visual informa-
tion may be discarded.

To avoid this problem, we developed a third AV
system which implements a hybrid DI+SI model. We do
this by replacing the acoustic component of the second
AV system by an DI-based component.

3. ACOUSTIC AND VISUAL WEIGHTS
DETERMINING

3.1 Adaptive Weights for Direct Identification
Model

In the first AV system, we denote the bimodal observa-
tion at time ¢ by o, = [a, ,v,] obtained by merging the
corresponding acoustic and visual observations. We
assume that both observations are statistically independ-
ent, which correspond to use a diagonal covariance ma-
trix and by the way reduce the total number of parame-
ters to estimate.

With the previous assumption, the composite obser-
vation o, could be split into two streams. In this man-

ner, the probability to observe o, at instant ¢ in state i

could be written:
P(o/|state, =i) = P(a,)x P¥ (v,) M

where P(a,) and P/% (v,) represents the probability
of the acoustic vector, respectively the probability of
visual vector exponentially weighted by 7 .

At the time of Baum-Welch learning or Viterbi de-
coding, using the probability estimate (1) allows for
change in the visual source contribution, and a bias the
estimated likelihood. For yp values close to 1, visual
source will contribute likewise the acoustic one in the
likelihood estimation, while values of y, less than 1
attenuate its importance.

The visual weighting factor 7, could be leamn to
adapt the training set as in (Silsbee and Su, 1996). Be-
cause our training data is not sufficient to adopt this
approach, we determinate it as a linear function of the
noise level like in (Meier et al., 1996) (see Figure 1).

The phonemic CHMMs are trained on the same ut-
terances of clean and noisy data. During the test, the

visual weighting factor y, is adjusted according to the

noise level, which is provided to the system as a con-
textual input.

-10 0 10 clean

Figure 1: Variation of the visual weighting factor yy as
a function of noise level in the DI based system

3.2 Adaptive Weights for Separate Identifica-
tion Model

In the second AV system, the acoustic component fur-
nish N-best acoustic recognition hypotheses. The visual
component is used to compute a visual score for each
acoustic recognition hypothesis. Since taken into ac-
count the correlation between the acoustic and the visual
component is relatively complex, we assume the inde-
pendence between both modalities. Thereby, acoustic
and visual scores could be combined in a linear weight-
ing manner:

Sbest =4 xSv+(1 —A)x Sa )

where S, and S, are express in term of the logarithm

of the output probabilities. The final solution corre-
sponds to the maximum of this bimodal output probabil-
ity estimate.

We calculate the visual weighted factor A as in
(Adjouani and Benoit, 1996) with the following formula:

2,=__0-V___. 3)
o, +0,

In which o, and o, are respectively the dispersion of
video and acoustic scores with the signification that low
values of dispersion indicates high ambiguity in the
decision coming from the corresponding component.

The value of the dispersion is calculated as follows:
2 [Sn =53]
_ {uiiefr234)
ci

@

where S,",, represent the logarithm of output probability
corresponding to the i-th recognition hypothesis for the

modality mc {a,v} .
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Figure 2: Variation of the visual weighting factor A as a
function of noise level in the SI based system

Figure 2 shows the variation of A as a function of
noise level. The corresponding mean and standard de-
viation are calculated over the test set.

The variation of the visual weight confirm the gen-
eral hypothesis about the additive information included
in lip shapes, especially in noisy environments. For
example, the mean of the visual weight is about 0.5 in
clean conditions and about 0.9 at -10 dB.

However, the estimation of the visual dispersion o,
seem to be biased, since its value is calculated from the
acoustic and visual scores corresponding to the N-best
acoustic recognition hypotheses. This explain, we be-

lieve, the overestimation of the visual weighting factor
A.

3.3 Adaptive Weights for Hybrid Identification
Model
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Figure 3: Variation of the visual weighting factor A as a
function of noise level in the DI+SI based system

The visual weight 7, corresponding to the DI-based
component has a fixed low value of 0.2, while the one A
corresponding to the SI-based component is calculated
as previously.

We plotted in Figure 3 the mean and the standard de-~
viation of A. In non-noisy environment corresponding to
high values of S/N, the mean of A is about 0.4, which
means that both modalities are taken into account with
scarcely equal weights. In very noisy environment at -

10 dB, the mean of A is about 0.7, i. e. the visual source
is preponderant for recognition process. The visual
weights are less than in those corresponding to the SI
based system, over different test condition. This may be
explain by the fact that the acoustic-only component is
replaced by a DI-based AV component.

4. EXPERIMENTS

4.1 Test Task and Results

| System \ SNR |clean [10aB |0aB [-104B |

Acoustic system | 90.8 % | 85.5 % | 67.9 % | -44.3 % |

DI based AV system
equal weights 87.8% {86.2% |62.3 % {37.6%
adaptive weights |95.4 % | 88.3 % | 75.0 % | 37.6 %

SI based AV system
equal weights 90.1 % [ 88.0% [ 79.9% |-32.3 %
adaptive weights |91.5% |87.3% {753 % |-32.7%

DI+SI based AV system
93.6 % { 88.0 % | 76.7 % | 40.4 %
adaptive weights |94.3 % {89.4% [78.1 % |40.4 %

Table 1: System performances with equal weights and
automatic adaptive weights

equal weights

The four systems were experimented on the same
task: recognition of connected letters in French. The
corpus, realised at ICP-Grenoble, it is composed of 200
utterances, of which two thirds were used for learning
and one third for test. The acoustic signal is artificially
degraded with dining-hall noise at a SNR of 10, 0 and
-10dB.

System performances are expressed in letter accuracy
(correct letters minus inserted letters). The results ob-
tained with the AV systems using equal weights and
automatic adaptive modality weights, over different test
condition, are shown in Table 1 and plotted in Figure 4.

4.2 Discussion

These results confirm the general hypothesis concerning
the importance of weighting modality factor in the AV
recognition process. Indeed, generally, system perform-
ances obtained with adaptive weights are better than
those obtained with equal weights. However in the case
of SI based AV system using adaptive weights instead of
equal weights decrease its performance, except for clean
data.
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Figure 4: System performances with equal weights and
automatic adaptive weights

We explain these results by the fact that the estimation of
the visual dispersion o, is biased, which implies an
overestimation of the visual weight A.

Even if system performances are not as good as those
corresponding to the empiricaily-obtained optimal mo-
dality weights (Alissali e al., 1996) in some cases (clean
and -10dB), they are generally better than those obtained

with any fixed weights, over different test conditions.
This confirm the appropriateness of automatic determi-
nation of audio and visual weights for AV recognition
process.

S. CONCLUSION

In this paper we presented our work on adaptive integra-
tion of visual information for different AV recognition
systems, which implement the DI model, the SI model or
the hybrid DI+SI one. The acoustic and visual weights
are dynamically adjusted manly according to the noise
level.

The results we obtained are satisfactory especially for
moderate noise level (10 dB and 0 dB) and confirm that
the adaptive scheme proposed by (Adjouani and Benoit,
1996) is also well suited for more complex connected-
letter-recognition task. However these results are yet to
be confirm on more important corpus.

Further work is also to be done in order to exploit the
auditory and visual confusion of phonemes for deter-
mining acoustic and visual weights.
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