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ABSTRACT

In this paper we describe an algorithm for generating word net-
works in a continuous speech recognition system. Recently, N-best
search strategies have gained considerable popularity and have been
used for multi-stage searches including interfacing speech recognition
and natural language systems as well as applying more computation-
ally expensive constraints in later stages. However, examination of

" N-best lists reveals significant overlap between different hypotheses,
with differences typically localized to regions where the acoustic sig-
nal is not robust. In order to improve both computational and rep-
resentational efficiencies, we have developed a word network search.
This search is very similar to our A* N-best search, but contains an
additional path-merging step. The resulting word networks contain
the same N complete hypotheses that are within a specified score
threshold of the best complete score, but in a much smaller form
that is faster to compute. These word networks can then be used as
search spaces by subsequent search stages.

INTRODUCTION

Until recently, most speech recognition systems have only
been faced with the task of producing the single best word string
for a given input utterance. Because of this, the search strate-
gies used (e.g., the Viterbi search [1]) were typically able to
efficiently find the top scoring word string, but were not able to
provide any other sentence hypotheses. Furthermore, typically
these search strategies were only been able to make use of local
grammatical constraints. However, with recent research effort
in developing speech understanding systems [2} (i.e., systems
that combine speech recognition with language understanding
to perform interactive problem solving) it has become desir-
able to either integrate more complex language models into the
search, or to have the speech recognition component provide
multiple sentence hypotheses, which can then be filtered by the
natural language component.

Initial work in combining speech recognition and natural
language technology used a modification of the Viterbi search to
provide the N-best sentence hypotheses [3]. This work showed
that at least for some tasks, the correct answer was very often
in the N-best sentence list for fairly small N, and therefore an
N-best list would provide a useful interface between a speech
recognition system and a natural language parser. Based on this
success, other more efficient N-best search strategies were devel-
oped, including other modifications of the Viterbi search [4, 5]
as well as algorithms based on the A* search [4, 6, 7).

1This research was supported by ARPA under Contract N00014-89-J-
1332, monitored through the Office of Naval Research.
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N-best algorithms have found widespread use in systems
that combine speech recognition and natural language under-
standing [4, 5]. Although work has been done on integrating the
natural language constraints into the search itself {8, 9], N-best
strategies have remained popular not only because of their ease
of implementation, but also because they greatly improve the
efficiency of the development effort since one can precompute
the N-best lists for a large corpus to use as input for natural
language experiments.

In addition, an unanticipated but important application of
N-best searches has been in speeding up the development of
improved recognition algorithms. One can use N-best resort-
ing experiments as a mechanism for improving recognition sys-
tems. For example one can test a new acoustic model by using
it to resort N-best lists rather than integrating this new model
into the search directly [10, 11, 12]. Resorting N-best lists can
require many orders of magnitude less computation than per-
forming the complete search, and may even allow the use of
constraints that would not be possible in the complete search
(e.g., acoustic models that depend on long-distance contextual
factors).

While N-best search strategies have been very useful, they
are beginning to encounter problems as we move towards more
difficult speech understanding tasks. As both the utterance
length and vocabulary size grow, increasingly larger lists of sen-
tence hypotheses are required to capture the necessary amount
of ambiguity. This is because sentence hypotheses on the N-
best list often differ minimally in highly localized regions where
the acoustic signal is not very robust. However, a network rep-
resentation can capture the same information in a much more
compact form. Recently, there has been interest in computing
such networks [13, 14].

In this paper, we will describe modifications to our A* N-
best search algorithm to allow it to directly compute word net-
works. Not only does this algorithm produce output in a more
compact form, but it is also able to compute a network which
is guaranteed to contain the N-best sentence hypotheses using
much less computation than the corresponding N-best search.

A* WORD NETWORK SEARCH
A* Search

An A* search is a best-first search with a particular evalu-
ation function defined as:

f*(p) = g9(p) + h*(p),
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where f*(p) is the estimated score of the best path containing
partial path p, g(p) is the score for the match from the beginning
of the utterance to the end of the partial path p, and ~*(p) is an
estimate of the best-scoring extension of the partial path p to
the end of the utterance {15). The search proceeds by keeping
a stack of partial paths, extending the best-scoring partial path
by all possible next words and putting the resulting paths back
on the stack. The search terminates when the top-scoring path
covers the entire utterance. This search is admissible if A*(p) is
an upper bound on the actual best-scoring extension of partial
path p to the end. This can be seen by observing that when a
path covers the entire utterance, k*(p) = 0, therefore f*(p) is
no longer an estimate but the true score of the path p. Since
all other paths on the stack have upper bounds on their scores
which are less than this completed score, the completed path
must be the highest-scoring path.

To efficiently apply the A* search to spoken language sys-
tems, it is important to have as tight a bound as possible for
k*(p), since the number of path extensions needed to find the
best-scoring path decreases as this estimate approaches the ac-
tual score for the completion of the partial path. We can use a
Viterbi search te compute this upper bound by searching back
from the end of the utterance to find the best score to the end
for each lexical node at each point in time. If the constraints we
use in the Viterbi search to compute the best score to the end
are the same as the constraints used in the forward direction of
the A* search, then this estimate of the best-scoring completion
of the path is exact and the search proceeds very quickly. In
this case the search only expands partial paths that are part of
the best path (or paths that happen to have exactly the same
score as the best path). Another consequence of using a Viterbi
search as a first pass is that it computes the score of the best
complete path. We can use this score to limit partial path ex-
tension to those extensions whose scores fall within a specified
threshold of the best score.

A* N-Best Search

We can turn A* into an N-best search simply by modifying
the stopping criterion to wait for N completed paths to reach
the top of the stack. By the same reasoning that showed the ad-
missibility for A*, we can guarantee that the A* N-best search
results in the N top scoring sentence hypotheses. However in
this case, the Viterbi estimate is no longer an exact estimate
of the future of the partial path, but becomes a looser upper
bound as N increases.

A* Word Network Search

If the A* algorithm utilizes local constraints such as a word
bigram, then all partial paths that end at a particular time
and lexical node will have the same set of extensions. If we
keep track of the time/word endpoints of partial paths, then we
can merge paths that share common endpoints. This merging
creates a network instead of a set of word strings as the N-best
search does.

Our A* word network search consists of the basic A* algo-
rithm described above with the addition a path-merging step.
Before we push a partial path onto the stack, we check to see if
any previously encountered paths ended at the same time/word
endpoint. If there are any, we compare their scores to the cur-
rent path’s score. If the current score is the best so far, we push
the current path onto the stack and remove the previous best
from the stack, otherwise we do not alter the stack. Either way,
for every partial path extension, we add an arc to the growing
word network. The basic idea is to have at most one partial
path, the best one, in the stack for each time/word endpoint.
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The search continues until the stack is empty or some arbitrary
computation limit (e.g., number of path extensions) is reached.
When the search successfully completes with an empty stack,
the word network contains all word arcs that are part of com-
plete paths whose scores are within a specified threshold of the
score of the best-scoring complete path. Note that the pruning
that goes into building the network is based on global (com-
plete sentence) path scores. This network is not as compact is
it might be because it can contain complete paths with iden-
tical word strings differing only in time alignment. If this is
undesirable, it should be possible to prune arcs that contribute
ounly to different alignments.

One of the more subtle issues of this word network search in-
volves merging paths and the order of path extension in the A*
search. It would be undesirable if a partial path was extended
in the search, only to merge with another partial path that has
a better score. According to our algorithm, all extensions of the
first (lower-scoring) partial path would have to be removed from
the stack, wasting the search effort that went into generating
them. However, by the same logic that shows admissibility of
the A* search, a partial path to a given word/time point cannot
both be selected for extension and subsequently be beaten out
by another partial path to the same word/time point. There-
fore, the order of evaluation in the A* word network search
guarantees that no path extensions will be duplicated. Elimi-
nating all duplicate extensions is where the word network search
gains its computational efficiency.

EXPERIMENTS

The potential advantages of the word network search include
both smaller representation and better computational efficiency.
‘We have explored both of these within the context of recogni-
tion of spontaneously produced continuous speech in the ATIS
domain [16).

We have compared various measures of computation require-
ments and representation size as a function of search depth and
utterance length. We define the search depth to be the amount
of search needed to guarantee that the output contains all sen-
tence hypotheses within some specified score threshold relative
to the best-scoring hypothesis. Both the N-best and word net-
work searches can produce all word strings within a specified
score threshold from the best score by simply running the search
until the stack becomes empty. Note that our word networks
contain all time-aligned word strings, even those that differ only
in alignment. However, our N-best search only outputs distinct
word strings irrespective of alignment differences. Even so, we
have found significant efficiency improvements with the word
network search.

Data and Recognition System

The corpus used for this evaluation was a subset of DARPA
November 1992 ATIS evaluation [17]. To reduce the amount of
computation needed, only the utterances from the first session
for each speaker were used. We also threw away a few of the
longest utterances, because we were not able to compute the
N-best to the search depth used in the experiments. This left
us with 196 utterances from 29 speakers.

The recognition system used was the SUMMIT system as
described in [18]. For these experiments, we used context-
independent acoustic models and a bigram language model.
(In the SUMMIT system, context-dependent models and higher-
order language models are applied after the initial N-best or
word network search.) This stripped-down version of the sys-
tem had a first choice word accuracy of 76.4% on these 196
utterances.
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Figure 1: Sentence Accuracy vs. Score Threshold

For these experiments we have compared various measures of
efficiency versus search depth, but the necessary range of search
depths depends on the requirements of subsequent processing
stages. If the word networks are being used as an initial search
for a multi-stage search, then the depth needed in the first stage
depends on the relative strengths of the constraints used in
the first and later stages of the search. If later stages of the
search perform large scoring changes, we need a relatively loose
threshold in the initial search.

To get some idea of the range of search depths of interest
(at least for this recognition task and this system), Figure 1
shows the percentage of correct sentences contained within a
given search depth. Note that this is a spontaneous speech task
and contains out-of-vocabulary words. Therefore, the sentence
accuracy will not go to 100% no matter how deep we search
since we make no attempt to address out-of-vocabulary words.
For this experiment, 76.6% of the sentences did not contain out-
of-vocabulary words. This ceiling is displayed in the figure as
3 horizontal line. The vertical line shows the maximum search
depth used in the following experiments.

Computational Efficiency

It is difficult to compare in complete detail the computa-
tional needs of these two algorithms, since the overall compu-
tational efficiency depends on the details of the various parts of
the computation (e.g., the implementation of the stack mecha-
nism). Instead, we have focused our attention on the portion
of the computation that the two algorithms have in common:
extending partial paths. We used the number of partial path
extensions as our measure of computation. This is a reasonable
measure since this is where both algorithms spend the majority
of time.

Figure 2 displays the geometric mean across utterances of
the number of path extensions needed to search to a given search
depth. We chose the geometric mean since the arithmetic mean
would be dominated by the worst-case utterances and there is
a very large variation between different utterances. This figure
shows that for a given search depth, the word network search
requires fewer partial path extensions, and, thus runs faster.
Further, as the search depth increases, the difference between
the A* search and the word network search increases. This
difference is due to the significant amount of path merging in the
word network. Note that our N-best search also performs some
merging (where partial paths ending at the same point in time
have identical word sequences but differ in time alignment).
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Figure 3: Representation Size vs. Search Depth

Efficiency of Representation

We have examined the efficiencies of the N-best and word
network representations versus search depth. For N-best, a rea-
sonable measure for complexity of representation is the number
of pops from the stack since every partial path popped from the
stack corresponds to a word in the N-best list (subject to word-
string pruning). For word networks, the number of arcs in the
network is the number of partial path extensions. Figure 3 dis-
plays the relative sizes of the two representations as the search
depth increases. We've also plotted N, the number of unique
sentence hypotheses. This comparison is somewhat unfair be-
cause the word networks are the raw networks produced by the
search and contain all alignments, whereas the N-best do not.
Depending on the intended use of the word networks, it might
be desirable to apply network reduction algorithms to prune
them. This would be especially useful if we were concerned only
with word strings (as contained in the N-best output) rather
than all possible alignments of these strings. Even without such
pruning, the word networks have smaller representations.

Dependence on Utterance length

We have noticed a very large utterance-to-utterance vari-
ation in the size of the search for a given search depth (e.g.,
the number of path extensions ranges from 562 to well over
8,000,000 for the maximum depth of 800 in the plots). While
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Figure 4: Partial Path Extensions vs. Utterance Duration

some of this variation is certainly due to the strength of the
acoustic evidence, there is also a strong dependence on utter-
ance length. Figure 4 shows the scatter plot of the number
of partial path extensions versus utterance duration with the
search depth fixed at 600. For both searches, we've overlayed
lines produced by a scatter plot smoother (lowess in S). (The
line for N-best stops at 10 seconds because some longer sen-
tences required too much computation to reach the search depth
and aren’t included in the plot. However, we had no difficulty
computing the corresponding word networks.) As duration in-
creases, the required search effort increases for both algorithms,
but the increase is much more substantial for the N-best search.
The word network search is better behaved, requiring about two
orders of magnitude fewer expansions in the worst cases.

DISCUSSION

As we have shown, a straightforward change to the A* N-
best search that we had used previously results in an A* word
network search that has significant computational and space
advantages. On average, we found a factor of 9 reduction in the
number of path extensions needed for a search depth of 800.
The savings for deeper searches are even greater.

We have found the word networks to be a convenient inter-
mediate representation for later stages of processing. We can
efficiently apply additional constraints in a second stage search
by using another A* search. In this case, the word network con-
strains the search by providing a list of next-word extensions for
any partial path. By saving the acoustic and language model
scores, as well as g(p) and h*(p), we can avoid the recomputa-
tion of these scores during the second stage of the search. Since
this second stage A* search is very similar to the original search,
it can also produce single hypotheses, N-best lists, or even new
word networks to be used by yet another stage of processing.

Due to the computational advantages of the word-network
over the N-best representation we have incorporated the net-
works into our SUMMIT speech recognition system. In our ex-
periments on the ATIS domain, we have searched word networks
using a class 4-gram grammar to reduce the word error on the
February 1992 test set by 17% [18]. In the future we plan to
incorporate more of our expensive knowledge sources into word
network searches.

REFERENCES

[1} A. Viterbi, “Error bounds for convolutional codes and an
asymptotic optimal decoding algorithm,” IEEE Trans. Inform.
Theory, vol. IT-13, pp. 260-269, Apr. 1967.

EUROSPEECH 93, Berlin, Germany, September 1993

[2] V. W. Zue, “Development of spoken language systems.” To be
published in IEEE Ezpert, 1993.

[3] Y. Chow and R. Schwartz, “The N-best algorithm,” in Proc.
DARPA Speech and Nat. Lang. Workshop (Harwichport),
pp. 199-202, Oct. 1989. .

[4] V.Zue, J. Glass, D. Goodine, H. Leung, M. Phillips, J. Polifroni,

and S. Seneff, “Integration of speech recognition and natural

language processing in the MIT VOYAGER system,” in Proc.

IEEE Ini. Conf. Acoust., Speech, Signal Processing (Toronto),

pp. 713-716, May 1991.

R. Schwartz and S. Austin, “A comparison of several approxi-

mate algorithms for finding multiple (N-best) sentence hypothe-

ses,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process-

ing (Toronto), pp. 701-704, May 1991.

F. K. Soong and E.-F. Huang, “A tree-trellis based fast search

for finding the N best sentence hypotheses in continuous speech

recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Processing (Toronto), pp. 705-708, May 1991.

P. Kenny, R. Hollan, V. Gupta, M. Lennig, P. Mermelstein,

and D. O’Shaughnessy, “A*-admissible heuristics for rapid lex-

ical access,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Processing (Toronto), pp. 689-692, May 199%.

{8] D. Goodine, S. Seneff, L. Hirschman, and M. Phillips, “Full in-

tegration of speech and language understanding in the MIT spo-

ken language system,” in Proc. European Conf. Speech Comm.

and Tech. (Genoa), pp. 845848, Sept. 1991.

H. Murveit and R. Moore, “Integrating natural language con-

straints into HMM-based speech recognition,” in Proc. IEEE

Int. Conf. Acoust., Speech, Signal Processing (Albuquerque),

vol. 1, pp. 573-576, Apr. 1990.

[10] M. Phillips, J. Glass, and V. Zue, “Modelling context de-
pendency in acoustic-phonetic and lexical representations,” in
Proc. DARPA Speeck and Nat. Lang. Workshop (Pacific Grove),
pp. 71-76, Feb. 1991.

{11] M. Ostendorf, A. Kannan, S. Austin, O. Kimball, R. Schwartz,
and J. R. Rohlicek, “Integration of diverse recognition method-
ologies through reevaluation of N-best sentence hypotheses,” in
Proc. DARPA Speech and Nat. Lang. Workshop (Pacific Grove),
pp- 83-87, Feb. 1991.

[22] R. Schwartz, S. Austin, F. Kubala, J. Makhoul, L. Nguyen,
P. Placeway, and G. Zavaliagkos, “New uses for the N-best sen-
tence hypotheses within the BYBLOS speech recognition sys-
tem,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process-
ing (San Francisco), vol. 1, pp. 1-4, Mar. 1992.

[13] H. Murveit, J. Butzberger, V. Digalakis, and M. Weintraub,
“Large-vocabulary dictation using SRI’'s DECIPHER speech
recognition system: Progressive search techniques,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing (Minneapo-
lis), vol. 2, pp. 319-322, Apr. 1993.

[14] M. Oerder and H. Ney, “Word graphs: An efficient interface be-
tween continuous-speech recognition and language understand-
ing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process-
ing (Minneapolis), vol. 2, pp. 119-122, Apr. 1993.

[15] A. Barr, E. Feigenbaum, and P. Cohen, The Handbook of Arti-
ficial Intelligence. Los Altos, CA: William Kaufman, 1981.

[16] L. Hirschman, M. Bates, D. Dahl, W. Fisher, J. Garofolo,
K. Hunicke-Smith, D. Pallett, C. Pao, P. Price, and A. Rud-
nicky, “Multi-site data collection for a spoken language cor-
pus,” in Proc. Int. Conf Spoken Language Processing (Banff),
pp. 903-906, Oct. 1992.

(17] D. S. Pallett, J. G. Fiscus, W. M. Fisher, and J. S. Garofolo,
“Benchmark tests for the DARPA spoken language program,” in
Proc. ARPA Human Lang. Tech. Workshop (Plainsboro), Mar.
1993.

(18] J. Glass, D. Goddeau, D. Goodine, L. Hetherington,
L. Hirschman, M. Phillips, J. Polifroni, C. Pao, S. Seneff, and
V. Zue, “The MIT ATIS system: January 1993 progress re-
port,” in Proc. DARPA Spoken Lang. Systems Tech. Workshop
(Cambridge), Jan. 1993.

5

6

2

[7

[0

1536



