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Abstract
The Gaussian mixture models (GMM) has proved to be an

effective probabilistic model for speaker verification, and has
been widely used in most of state-of-the-art systems. In this
paper, we introduce a new method for the task: that using Ad-
aBoost learning based on the GMM. The motivation is the fol-
lowing: While a GMM linearly combines a number of Gaus-
sian models according to a set of mixing weights, we believe
that there exists a better means of combining individual Gaus-
sian mixture models. The proposed AdaBoost-GMM method
is non-parametric in which a selected set of weak classifiers,
each constructed based on a single Gaussian model, is optimally
combined to form a strong classifier, the optimality being in the
sense of maximum margin. Experiments show that the boosted
GMM classifier yields 10.81% relative reduction in equal error
rate for the same handsets and 11.24% for different handsets, a
significant improvement over the baseline adapted GMM sys-
tem.

1. Introduction
The speaker verification task is essentially a hypothesis testing
problem or that of a binary classification between the target-
speaker model and impostor model. The Gaussian mixture
models (GMM) method [8] has proved to be an effective proba-
bilistic model for speaker verification, and has been widely used
in most of state-of-the-art systems [8]. Each speaker is charac-
terized by a GMM, and the classification is performed based on
the log likelihood ratio (LLR) of the two classes [8].

A GMM as aims to approximate a complex nonlinear distri-
bution using a mixture of simple Gaussian models, each param-
eterized by its mean vector, covariance matrix and the mixing
parameter. These parameters are learned by using, e.g. an EM
algorithm. In adapted GMM based speaker verification systems,
a GMM is learned for the imposter class, and the target-speaker
model is approximated by adaptation from the imposter GMM,
i.e. modification of the imposter GMM model. An complete
adaptation should be done on the mean vector, covariance ma-
trix and the mixing parameter; but it is usually performed for the
mean vector only since it is empirically observed that adaptation
also on covariance matrix and the mixing parameter would yield
less favorable results.

As such, the GMM modeling, i.e. the estimation of the
parameters, and especially the adaptation for the target-speaker
model are not optimal. This motivated us to investigate into a
method which would rely less on the estimated parameters and
could rectify inaccuracies therein.

AdaBoost methods, introduced by Freund and Schapire [2],
provides a simple yet effective stagewise learning approach: It
learns a sequence of more easily learnable weak classifiers, each
of them needing only slightly better than random guessing, and
boosts them into a single strong classifier by a linear combi-

nation of them. The weak classifiers, each derived based on
some simple, coarse estimates, need not to be optimal. Yet, the
AdaBoost learning procedure provides an optimal approach for
combining them into the strong classifier.

Originating from the PAC (probably approximately correct)
learning theory [11, 5], AdaBoost provably achieves arbitrarily
good bounds on its training and generalization errors [2, 10]
provided that weak classifiers can perform slightly better than
random guessing on every distribution over the training set. It
is also shown that such simple weak classifiers, when boosted,
can capture complex decision boundaries [1].

Relationships of AdaBoost to functional optimization and
statistical estimation are established recently. It is shown that
the AdaBoost learning procedure minimizes an upper error
bound which is an exponential function of the margin on the
training set [9]. Several gradient boosting algorithms are pro-
posed [3, 6, 12], which provides new insights into AdaBoost
learning. A significant advance is made by Friedman et al. [4].
It is shown that the AdaBoost algorithms can be interpreted as
stagewise estimation procedures that fit an additive logistical re-
gression model. Both the discrete AdaBoost [2] and the real ver-
sion [10] optimize an exponential loss function, albeit in differ-
ent ways. The work [4] links AdaBoost, which was advocated
from the machine learning viewpoint, to the statistical theory.

In this paper, we propose a new method for the speaker ver-
ification: that using AdaBoost learning based on the GMM. We
start with an imposter GMM and a target-speaker GMM, more
specifically, their mean vectors and covariance matrices but not
the mixing weights. Although the GMM models are inaccu-
rate, we are able to construct a sequence of weak classifiers
based on these GMM’s, weak classifiers meaning slightly better
than random guessing. The AdaBoost procedure (1) sequen-
tially and adaptively adjusts weights associated with the train-
ing examples which helps to construct and select the next good
weak classifiers, and (2) combine them sensibly to constitute a
boosted strong classifier. The combination is optimality in the
sense of maximum margin. Experiments show that the boosted
GMM classifier yields 10.81% relative reduction in equal error
rate for the same handsets and 11.24% for different handsets, a
significant improvement over the baseline adapted GMM sys-
tem.

2. GMM Representation of Speaker Voices
In speaker verification, the task is to verify the target speaker
and to reject imposter speakers. Two GMM are built from train-
ing data, the universal background model (UBM) for the im-
poster class and the target speaker model. This section describes
the GMM modeling, on which most of the state-of-the-art sys-
tems are based, as the starting point of the proposed method.

Mel-frequency cepstral coefficients (MFCCs) are used as
acoustic features for signals of speaker voices. All utterances
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are pre-emphasized with a factor of 0.97. A Hamming win-
dow with 32ms window length and 16ms window shift is used
for each frame. Each feature frame consists of 10 MFCC co-
efficients and 10 delta MFCC coefficients. Finally, the relative
spectral (RASTA) filter and cepstral mean subtraction (CMS)
are used to remove linear channel convolutional effects on the
cepstral features. Therefore, each window of signal frames is
represented by a 20-dimensional feature vector, which we call a
feature frame.

A sequence of
�

feature frames, denoted � �� � � 	 � � � 	 � � �
, are observed from the utterance of the same

speaker. Assuming the feature vectors are independent, the
probability (likelihood) of the observation � can be obtained
as follow: � � � � � � � � � � � � � � 	 � � �

(1)

� � � � ! " � � #$� % � ' � � � � � � � �
(2)

� � � ! " � � ()* % � � � � � ! " �
(3)

Here, ' � is the weight of Gaussian mixture � � � � � � � 	 � � �
with

mean
� � and covariance matrix

� � , and
" � � ' � 	 � � 	 � � �

is
also used to represent the model parameters.

Using the EM algorithm, we can get a local optimum -"
for

"
under the MLE criterion by maximizing the probabilistic

density for all observation frames.

-" � . 0 1 3 . 5 � � � ! " �
(4)

The universal background model (UBM) is obtained by the
MLE training. The target speaker model may also be obtained
in a similar way.

However, to reduce computation and to improve perfor-
mance when only a limited number of training utterances are
available, some adaptation techniques were proposed, e.g. [8],
in which MAP adaptation outperforms the other two, maximum
likelihood linear regression (MLLR) adaptation and eigen-
voices method.

MAP adaptation derived target speaker model by adapting
the parameters of the UBM using target speaker’s training data
under the MAP criterion. Experiments show that when only
the mean vectors of the UBM model are adapted, we can get
the best performance. Given a UBM model

" 8 9 ;
and training

data � from the hypothesized speaker, the adaptation can be
done as follow,< � > ! � � � � ' � � � � � � � �� � � � ! " 8 9 ; � (5)

C � � ($ * % � < � > ! � � �
(6)

D � � � � � EC � ($ * % � < � > ! � � � � �
(7)

-� � � F � D � � � � G � E H F � � � � (8)F � � C �C � G J (9)

where
J

is a constant relevance factor fixed at
J � E K . The

parameters
" L M

of the target speaker GMM is thus obtained.
The classification for speaker verification may be per-

formed based on the the log likelihood ratio LLR. Given the

observation � , the LLR is defined as

N N Q � � � � R T 1 � � � ! " L M �� � � ! " 8 9 ; � (10)

�
�$ � % � W R T 1 � � � � ! " L M � H R T 1 � � � � ! " 8 9 ; � Y

Because the corresponding means and covariances have been
estimated, the LLR can be computed analytically. The decision
function is Z � � � � G E [ \ N N Q � � � ] _

(11)� H E a b c d J e [ f d (12)

The threshold
_

can be adjusted to balance between the accu-
racy and false alarm rates (i.e. to choose a point on the ROC
curve).

3. AdaBoost Learning
The basic form of AdaBoost [2] is for two class prob-
lems. A set of

�
labelled training examples is given as� � � 	 g � � 	 i i i 	 � � � 	 g � �
, where

g � l � G E 	 H E �
is the class

label for the example
� � l n o

. AdaBoost assumes that a
procedure is available for learning a weak classifiers c p � � �
( q � E 	 s 	 i i i 	 u

) from the training examples, with respect
to a distribution of the examples determined by the associated
weight

e �
. It aims to learn a stronger classifier as a linear com-

bination of the
u

weak classifiersZ w � � � � w$
p % � F p c p � � �

(13)

The classification of
�

is obtained as the sign of

Z w � � �
. It may

be advantageous to use a normalized version of the above:Z � � � � z wp % � F p c p � � �
z wp % � F p (14)

Now, the classifier function is | } 1 ~ W � � 5 � Y
and the normalized

confidence score is
! Z � � � !

. The learning procedure, described
in Fig.1, is aimed to derive F p and c p � � �

.
In the simplest case, the error is to be minimized. An error

occurs when

Z � � � �� g
, or

g Z w � � � � �
. The “margin” of an

example � � 	 g �
achieved by c � � � l n

on the training set exam-
ples is defined as

g c � � �
. This can be considered as a measure of

the confidence of the c ’s prediction. The upper bound on clas-
sification error achieved by

Z w can be derived as the following
exponential loss function [9]� � Z w � � $ � � 5 � W H g � Z w � � � � Y

(15)

� $ � � 5 � � H g � w$
p % � F p c p � � � �

AdaBoost construct c p � � �
by stagewise minimization of

Eq.(16).
A characteristics of AdaBoost is that during the learning,

the AdaBoost re-weights each example, i.e. adaptively updatese � p ��
according to the classification performance of the learned

weak classifiers (Step 2(3)). More difficult examples are associ-
ated with large weights so that more emphasis in the next round



0. (Input)
(1) Training examples

� � � � � � � � � 
 
 
 � � � � � � � � �
,

where
� � � � �

; of which � examples have
� � � � �and

�
examples have

� � � � � ;
(2) Termination condition �

(e.g. based on Recall/False Alarm, or
� �  "

);
1. (Initialization)# $ & '� � �( * for those examples with

� � � � � or# $ & '� � �( + for those examples with
� � � � � .� � -

;
2. (Stagewise Learning)

while � not satisfied
(1)

� / � � � ;
(2) Learn 2 3 ;
(3) Update

# $ 3 '� / 4 5 7 8 � � � 9 3 � � � � =
, and

normalize to > � # $ 3 '� � � ;
3. (Output)

9 � � � � B CD F H J D L D $ N 'B CD F H J D .

Figure 1: Discrete AdaBoost Algorithm.

of learning weak classifier will be put on those examples. The
weighted error isQ

R � S � # $ R '� � 8 � � U�
9 � � � � =

(16)

Minimizing the above is the objective of 2 R V �
.

Given the current

9 3 X � � � � � > 3 X �
R Y � Z R 2 R � � �

, and
the newly learned weak classifier 2 3 (learned according to the
weights

# $ 3 X � ' � � � � �
), the best combining coefficient Z 3 for

the new strong classifier

9 3 � � � �
9 3 X � � � � � Z 3 2 3 � � �

is
the one which leads to the minimum cost:

Z 3 � a c d e f gJ h � 9 3 X � � � � � Z 2 3 � � � �
(17)

The minimizer is

Z 3 � �i j l d n � � � � � o � � # $ 3 X � ' �n � � � � � o � � # $ 3 X � ' � (18)

The weight for each � � � � �
are then updated# $ 3 ' � � � � � � # $ 3 X � ' � � � � � 4 5 7 � � Z 3 � 2 3 � � � �

(19)

which is equivalent to Step 2.(3).
The basic AdaBoost algorithm is for two-class problem. In

multi-class problems, where the class number � q i
, the final

decision could be obtained by combining multiple binary Ad-
aboost classifiers. There are two popular schemes for extending
binary classifiers to the multi-class case. One is the one-against-
all strategy, in which classification is performed between each
class and the remaining. This needs to train a total of � boosted
classifiers. The other is the one-against-one strategy, in which
classification is performed between each pair. The later strategy
will require � � � � � � s i

classifiers. In our system, we adopt
the former scheme to save the computational cost. The output
of the � strong classifiers are normalized as Eq.(14) to provide
the score for comparison. The final decision is made by maxi-
mizing the score.

Table 1: DCF, EER and relative reduction (SH: Same Handset.
DH: Different Handset)

Method DCF (SH) DCF (DH)

Adapted GMM 0.0460 0.1816
Boosted GMM 0.0395 0.1729
Rel. Reduction 14.13% 4.79%

Method EER (SH) EER (DH)

Adapted GMM 4.90% 21.96%
Boosted GMM 4.37% 19.49%
Rel. Reduction 10.81% 11.24%

4. Learning Weak Classifiers
An algorithm is needed to learn weak classifiers (Step 2.(2) in
Fig.1). In this work, we define a set of candidate weak classi-
fiers based on the model parameters (

t u � w u ) provided by the
two GMM’s (but without using the mixing parameter x u in this
stage), and find the best one from this set in each stage.

At iteration
�

, we define the set of base weak classifier
using the component LLR’s

2 $ 3 'u � � � � j l d y � � o { | } � # $ 3 X � ' �y � � o { ~ � � � # $ 3 X � ' � � � $ 3 'u (20)

(21)

where the
� $ 3 'u is set to ensure a required accuracy. The best

weak classifier is the one for which the false alarm is mini-
mized: � � � a c d e f gu � � � 2 $ 3 'u � � � �

(22)

where � � is the false alarm caused by 2 $ 3 'u � � �
(also w.r.t.# $ 3 X � ' ). This gives us the best weak classifier as

2 3 � � � � 2 $ 3 'u � � � �
(23)

5. Experiments
5.1. Data Set

All experiments are conducted on the 1996 NIST speaker recog-
nition evaluation data set. Only male speakers are investigated.
There are 21 male target speakers and 204 male impostors in
the evaluation data set. The training utterances for each target
speaker are extracted from two sessions originating from two
different handsets, one minute per session. As for the testing,
there are 321 target trials and 1060 impostor trials. The duration
of each test utterance is about 30 seconds.

5.2. Results

The system performance is evaluated using the detection error
tradeoff (DET) curve, detection cost function (DCF) and equal
error rate (EER). DCF can be defined as follow [7],� � � � � � � � y � � � n �  � � � �  � y �  � n � � �

(24)

Here, y � � and y �  
are false rejection rate and false acceptance

rate respectively at a operating point. � � � and � �  
are costs for

false rejection and false acceptance.
n �  � and

n � � �
are the prior

probability of target trials and impostor trials.
n �  � � - 
 - � andn � � � � - 
 � �

.



EER and DCF for Boosted GMM and Adapted GMM un-
der the same and the different handsets are shown in Table 1.
DET curves for Adapted GMM and Boosted GMM for the same
handset data are shown in Figure 2, and those for the different
handsets are shown in Figure 3. From the results, we could
conclude that boosted GMM yields a significant improvement
on relatively reduction of over 10% than the baseline adapted
GMM approach. The improvement is due to the optimal combi-
nation of individual GMM learned by non-parametric AdaBoost
method.
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Figure 2: DET curves for boosted GMM and Adapted GMM on
the same handset.
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Figure 3: DET curves for boosted GMM and Adapted GMM on
the different handsets

5.3. Conclusion

We proposed a novel boosting learning based algorithm that
could significantly improve the performance of the baseline

adapted GMM system. The boosted GMM optimally combines
weak classifiers, i.e. component log likelihood ratio in GMM, to
a strong classifier. AdaBoost provides an effective framework
for fusing different models. In future, it would be interesting to
investigate how to use AdaBoost at low level feature (such as
cepstral) level to learn better speaker models.
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