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Abstract
This paper examines the usefulness of including prosodic and
phonetic context information in the phoneme model of a speech
recognizer. This is done by creating a series of prosodic and
phonetic models and then comparing the mutual information
between the observations and each possible context variable.
Prosodic variables show improvement less often than phone
context variables, however, prosodic variables generally show
a larger increase in mutual information. A recognizer with
allophones defined using the maximum mutual information
prosodic and phonetic variables outperforms a recognizer with
allophones defined exclusively using phonetic variables.

1. Introduction
Prosody provides important cues to humans for speech under-
standing because not only does it change word meaning, but it
also affects the quality of phones. If computers were provided
knowledge of prosody, would they be able to better recognize
speech?

Many linguists have examined the effects of prosody on
speech. Wightman et al. [1] showed that phrase boundary depth
affects the distribution of phoneme duration in the preceding
syllable rhyme. Fougeron and Keating [2] have shown that on
the edges of prosodic phrase boundaries, final vowels and initial
consonants have less reduced lingual articulation. De Jong [3]
observed an increase in duration of prevoicing in initial voiced
stops in stressed syllables. Edwards et al. [4] found that chang-
ing intergestural phrasing reduces the overlap of a vowel gesture
with a consonant gesture, causing an increase in duration and a
strengthing effect for accented syllables. Cho [5] has shown that
accented vowels are not usually affected by coarticulation with
neighboring vowels and phrase initial vowels are susceptable
to coarticulation. Cho notes that boundary induced articulatory
strengthening occurs in phrase final vowel positions and phrase
initial consonant positions.

Researchers have also shown that machines are able to de-
tect the changes in speech induced by prosody. Wightman and
Ostendorf [6] present two algorithms that can detect and la-
bel prosodic phrase boundaries with over 90% accuracy. In [7]
Wightman and Ostendorf use a modification of the algorithms
used in [6] to detect prominences with accuracy of 86% and
boundary tones with an accuracy of 77%.

The goal of this paper is to examine two different prosodic
factors (intonational phrase structure and pitch accent), one syn-

Stop Fricative Liquid Nasal Vowel
Left LS LF LL LN LV
Right RS RF RL RN RV

Table 1: The ten non-prosodic, phone context dependent al-
lophone sets and their abbreviations. The words “Left” and
“Right” refer to which neighboring phone is being considered.
The phonetic classes, stop, fricative, liquid, nasal or vowel,
specify the type of the considered neighboring phone.

Prosody Independent IND
Accent Onset Onset
Accent Coda Coda
Accent All All
Content-Function CF
Phrase Final PF
Phrase Initial PI

Table 2: The prosodic allophone sets.

tactic factor (function vs. content words), and ten phone con-
texts to determine which of these factors are most useful to com-
puters for the purpose of speech recognition. Criteria for useful-
ness will include mutual information between context variable
and acoustic observations, and word recognition accuracy of a
speech recognizer built with appropriate context-dependent al-
lophones.

2. Phone Splitting
Determining whether or not prosodic and phone context (PC)
factors would be useful to the recognizer was accomplished by
examining the log likelihoods of prosodic and PC independent
phones and comparing them to log likelihoods of phone models
that have been split via a binary prosodic or phonetic distinction.
Binary distinctions are listed in Tables 1 and 2.

The monophone set used for phone splitting and recogni-
tion experiments was a version of the Sphinx monophone set
[8]. The base set of monophones contained 46 distinct phones
and silence. This base set is referred to as the independent
(IND) set.

The AC set split phones into two groups, accented and un-
accented. An accented vowel was defined to be the vowel in
the lexically stressed syllable of a word with a transcribed pitch
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accent. The phonetics literature suggests that consonants in the
onset of an accented syllable are more clearly enunciated than
consonants in the onsets of other syllables (e.g., DeJong, [3],
Cole et al. [9]), but does not specify whether or not rhyme con-
sonants are similarly hyper-articulated, so therefore, in order to
determine the full effect of accentuation on consonants, three
sub-sets of accented consonants were created. These subsets
were Coda, Onset and All. The Coda subset defined an accented
consonant to be any consonant occurring in the coda of the syl-
lable containing an accented vowel. The Onset subset defined
an accented consonant to be any consonant contained within
the onset of the syllable containing the accented vowel. The All
subset combined both Onset and Coda.

The CF allophone set distinguished phones as being either a
content phone or a function phone. A function phone is a phone
that occurs in a function word.

The PF allophone set split phones into “phrase final” and
“non-final” phones. A phone was considered to be phrase final
if it occurred in the nucleus or coda of the final syllable in a
word that preceded an intonational phrase boundary.

The PI allophone set separated phones into the groups
“phrase initial” and “non-initial.” A phrase initial phone could
occur only in the onset or nucleus of the first syllable in a word
that followed directly after an intonational phrase boundary.

3. Experiments

The Boston University Radio News Corpus [10] was used for
experimentation. Data was used from speakers F1A, M1B,
F2B, M2B, and F3A.

The dataset contained over three hours of data divided be-
tween a training set and a test set. The test set was approx-
imately 10% the size of the training set. The training set in-
cluded 23,103 words in 272 files. 11,386 of the words were ac-
cented. The training set also included 3829 intonational phrase
boundaries. The database was judged to be too small to train
a speaker-independent recognizer (removing two talkers for
testing purposes would have left too little data in the training
database), therefore all talkers were represented in both training
and test databases.

3.1. Log Likelihood Comparison

The goal of this experiment was to determine which prosodic
and phonetic factors could be used to improve speech recogni-
tion results. This was accomplished through comparing the log
likelihoods of the IND allophones to the log likelihoods of the
corresponding split allophones for each predefined allophone
set shown in Tables 1 and 2.

The log likelihoods were found using HTK, the Hidden
Markov Toolkit [11].

Once all models had been trained, the HRest function was
used to excise examples of each allophone from the test cor-
pus, and to compute the total log probability of the test exam-
ples given the HMM parameters. Consider phoneme ��, rep-
resented by �� different examples in the test corpus, �� �
���� � � � � ���

�, where �� is a matrix containing the sequence
of Mel frequency cepstral coefficient (MFCC) vectors spanning
the entire duration of the �th test-corpus example of phoneme
��. The standard definition of language model perplexity is
based on a measure of cross-entropy, ������ � ���, and can

be approximated as

������ � ��� � �
�

��

���
���

���� ������	�� (1)

where ������	�� is the likelihood extimated by an HMM with
parameters 	�.

Similarly, the cross-conditional differential entropy of �
given � � ��, and given knowledge of the binary context vari-
able 	 � ���� ��, is defined to be
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where 	���� are parameters of the HMM trained to represent
allophones of �� in the context 	 � ��, 	��� represent �� in
context 	 � �, and we assume that the test database has been
sorted so that tokens ���� � � � � ���

� are in context 	 � �� and
all others are in context 	 � �.

Given Eqs. 1 and 2, the mutual information between � and
	, conditioned on phoneme ��, is defined in the usual way:

����� 	�� � ��� � ������ � ���� ������ � ��� 	� (3)

Eq. 1 can be computed by using the HRest program to train
	� on training data, then running HRest once on the test corpus,
and discarding the re-estimated parameters; as an auxiliary out-
put, HRest computes the average log-likelihood of the test to-
kens given 	�, equivalent to ������ � ���. Eq. 2 may be com-
puted by using HRest to train and test two context-dependent
allophone models, and computing their weighted average.

3.2. Speech Recognition

The IND monophone set contained only 47 monophones, in-
cluding silence. The result of splitting any of these monophones
into prosodic allophones is that the number of phones, and thus
the number of model parameters, will increase. An increase in
model parameters will have a tendency to favor prosodic split-
ting, so therefore, in order to achieve an accurate comparison
between a prosody-independent and a prosody-dependent rec-
ognizer, the number of phones in the prosody-independent rec-
ognizer should be increased to match the number in the prosody
dependent recognizer.

In our first attempts to build prosody-dependent and
prosody-independent recognizers, we tried to use the HTK tree-
based clustering utilities to cluster individual states in each
allophone HMM. Tree-based clustering algorithms failed to
converge using the prosodically transcribed subset of Radio
News, apparently because of insufficient data (for example, the
Baum-Welch algorithm would frequently allocate fewer than
two frames of training data to some triphone state, resulting in
re-estimation failure). For this reason we developed a top-down
algorithm for clustering allophone models, as follows.

The mutual information measure in Eq. 3 was computed for
all of the phonetic context variables listed in Table 1. For each
phoneme, the two context variables with the highest ���� 	�� �
��� were selected, defining three prosody-independent allo-
phones of phoneme �� (	� � �, �	�� 	�� � ������, �	�� 	�� �
�������). The prosody-independent speech recognizer was
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Figure 1: Results of retranscribing the training data using the
prosody-dependent allophone set. See text.

trained using 139 prosody-independent allophone models (three
allophones of each of the 46 IND monophones and silence).
The prosody-dependent recognizer was then built by keeping
the number of model parameters constant and replacing the
PC dependent model for a given phone with a prosody depen-
dent model provided that the replacement model showed an im-
proved log likelihood. If a phone had no prosodic splits that
allowed for improvement in the log likelihood of the model,
then the PC splits were not replaced.

Figure 1 shows what percentage of the 82,729 monophone
training set came from each split for the prosody-dependent rec-
ognizer. In the figure, PC phones are phones for which there
was not significant improvements in the likelihood function due
to prosody, but there was still improvement due to a given phone
context. Default phones are phones that did not show improve-
ments for either the PC or prosody questions. The prosody-
dependent phones are sorted by question, PI, PF, CF and AC,
where AC combined the three splits Onset, Coda and All. 20%
of the segments were positive examples of a prosodic-context
dependent allophone judged to be important by the splitting al-
gorithm (PI, PF, CF, AC). 32% of the segments were positive
examples of a phone-context dependent allophone. 47% used
the default context-independent allophone label.

4. Results
4.1. Log Likelihood Comparison

In general, splitting monophones based on prosodic or phone
context improves the phoneme model. Phone context splits
seem to affect all linguistic phonetic groups equally, while
prosodic splits tend to favor different types of phones. Vowels
showed improvement over almost every defined prosodic cate-
gory. For consonants, the effects of prosodic splitting are most
significant for plosives and nasals. Prosody appears to have no
or very little effect on fricatives and glides. Table 3 sumarizes
these results.

As can be seen from Table 3, there are fewer prosodic splits
that allow for model improvement than there are phone context
splits. When there is an improvement due to prosodic split-
ting, the mutual information resulting from these splits suggest
that the inclusion of prosodic factors in the model will allow
for greater model improvement than will the inclusion of pho-

% Prosodic % Phone
Vowels 73.2 97.5
Stops 58.5 91.7
Fricatives 27.3 87.8
Nasals 76.5 94.9
Glides 8.3 92.0

Table 3: Percentages of prosodic or phone context splits that
showed improvement for each linguistic phonetic group.
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Figure 2: Box and whisker plot of likelihood function improve-
ments for prosodic and PC splits for each linguistic phonetic
category.

netic context factors. Figure 2 gives statistics for each linguistic
phonetic category.

4.2. Fixed Parameter Recognizer

Word recognition accuracy of the prosody-dependent and
prosody-independent recognizers are shown in Table 4. As seen
in the table, when prosodic factors are used as model parame-
ters, the number of words correctly identified by the recognizer
increases by 9.85%. The accuracy of the prosody based word
recognizer is greater than that of the prosody independent rec-
ognizer by 10.83%.

The main effect of incorporating prosody into the recog-
nizer is that the number of word substitution errors is drastically
reduced. Substitutions are reduced by 35% (relative) between
the prosody independent and prosody dependent recognizers.
Word insertions and deletions made by the prosody dependent
recognizer are also reduced by 27% and 15% respectively from
the number of insertions and deletions made by the independent
recognizer.

% Correct Accuracy
Independent 67.31 63.75
Dependent 77.16 74.18

Table 4: Word recognition accuracy for the prosody indepen-
dent and prosody dependent recognizers.



5. Conclusion
Both prosodic and phone context information can be included
in the phoneme model. When included, this information causes
the log likelihood of the model to improve. Prosodic informa-
tion is more useful to the model than is phonetic context in-
formation for most phonemes. This has been shown both in
experiments that compare the log likelihoods of phone context-
dependent models to those of prosodic context-dependent mod-
els and also in experiments that included both prosodic and pho-
netic context models in two different speech recognizers.

Prosody is essential for human understanding and interpre-
tation of speech. This work has shown that prosody is also sig-
nificantly important to computer recognition and understanding
of speech.
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