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Abstract  

One of the major research thrusts in the speech group at ICSI 
is to use Multi-Layer Perceptron (MLP) based features in 
automatic speech recognition (ASR). This paper presents a 
study of three aspects of this effort: 1) the properties of the 
MLP features which make them useful, 2) incorporating MLP 
features together with PLP features in ASR, and 3) possible 
redundancy between MLP features and more conventional 
system refinements such as discriminative training and system 
combination. The paper shows that MLP transformations yield 
variables that have regular distributions, which can be further 
modified by using logarithm to make the distribution easier to 
model by a Gaussian-HMM. Two or more vectors of these 
features can easily be combined without increasing the feature 
dimension. Recognition results show that MLP features can 
significantly improve recognition performance in large 
vocabulary continuous speech recognition (LVCSR) tasks for 
the NIST 2001 Hub-5 evaluation set with models trained on 
the Switchboard Corpus, even when discriminative training 
and system combination are used.  

1. Introduction 

MLPs have been successfully used for pattern classification in 
many application areas. With large enough training data and 
MLP size, and using 1-of-c binary coded class targets, an 
MLP can learn the posterior probability of a class given an 
observation, P(c|o). This was effectively used in acoustic 
modeling in hybrid MLP-HMM systems [6], where the scaled 
likelihood of a frame given a phone state in an HMM is 
computed by the posterior probability, P(c|o), scaled by the 
phone prior probability, P(c). This inherently discriminative 
approach worked well for many tasks, and was particularly 
useful for combinations of features with different statistical 
properties (e.g., continuous and binary features) [9].  

On the other hand, the dominant paradigm for speech 
recognition has incorporated mixtures of Gaussians to 
represent emission distributions for HMMs. Within this 
framework, many performance-enhancing refinements have 
been developed, such as feature adaptation and discriminative 
training. To benefit from the strengths of both MLP-HMM 
and Gaussian-HMM techniques, the Tandem solution was 
proposed in 2001 using MLP outputs as observations for a 
Gaussian-HMM [5]. An error analysis of Tandem MLP 
features [8] showed that the errors of the system using MLP 
features are different from the errors of a system using cepstral 
features. This suggested that a combination of both feature 
styles might be even better. This was first applied in the 
Aurora task [1], and later in the EARS project [7] on large 
vocabulary continuous telephone speech recognition. Here we 
continue this work, applying the combination techniques to 
increasingly more advanced systems, and noting the properties 

of the features that might be responsible for the virtues of the 
MLP-based features.  

In Section 2.1 properties of MLP features are discussed. 
Section 2.2 shows some technical details on how to combine 
MLP features with PLP features to achieve good ASR results. 
Section 2.3 presents results with systems incorporating other 
techniques that provide error reduction that could be 
redundant with that provided by MLP features; in particular, 
discriminative training and better language model rescoring, 
and system combination (ROVER).  

2. Using MLP-based Feature in LVCSR 

2.1. Properties of MLP Features 

Currently short-term spectral-based (typically cepstral) features 
are used in ASR, such as MFCC, or PLP. These features are 
typically non-Gaussian, and are most often modeled by 
mixtures of Gaussians. When diagonal covariance matrices are 
used, many Gaussian mixtures can be needed to effectively 
model the feature distribution.  

MLPs are effective at modeling unknown distributions. 
Cepstral features can be used as inputs to train an MLP with 
phoneme classes as targets. The MLP outputs, which are 
approximations to phone posterior probabilities given input 
features, can also be used as features for HMM. This MLP can 
then also be regarded as a nonlinear feature transform. There 
have been many kinds of linear feature transforms, such as 
LDA or HLDA [3], that make the transformed feature better 
for modeling by Gaussian mixtures for an HMM. This then 
suggests a question: when an MLP is used as a feature 
transform, i.e., when posterior approximations are used as 
features, what properties of this approach make it useful? 

For the work reported here, the MLPs are trained using 46 
mono-phones as targets. Thus, the MLP outputs have 46 
components. For each phone class, one out of the 46 
components corresponds to the underlying phone class. We 
call this component the “in-line” component for the class, and 
the rest are “off-line” components. 

The distributions of MLP outputs are more regular than 
those for the PLP features.  Figure 1 shows the feature 
distribution of three phone classes /ah/(triangle), /ao/ (star), 
and /aw/ (circle) in feature space spanned by the first three 
components of PLP feature. Figure 2 shows the feature space 
of the three MLP outputs corresponding to the same three 
phone classes, trained using PLP feature. The feature 
distributions for the three classes are more regular in the MLP 
feature space than PLP feature space. This is because MLP is 
able to discriminatively learn the irregular class boundaries 
and transform the features within the boundary close to their 
class target used in training, and transform the irregular class 
boundaries to equal posterior hyper-planes in the feature space 
of posteriors. The outputs are not always good estimates of the 

INTERSPEECH 2004 -- ICSLP
8th International Conference on Spoken

Language Processing
ICC Jeju, Jeju Island, Korea

October 4-8, 2004

ISCA Archive
http://www.isca-speech.org/archive

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

4-
33

7



class posteriors. Errors can happen, as seen in the figures, and 
the frame accuracy we can achieve is about 70% based on the 
highest posterior. But since the outputs are complemented by 
PLP features, they are rarely altogether bad. 

While the distributions of MLP outputs shown in Figure 2 
are regular, they are difficult to model using Gaussian 
mixtures due to the sharp shape of the distribution. In-line 
components distribute roughly uniformly between 0 and 1 and 
taper away near 0, and off-line components distribute very 
narrowly around 0. To Gaussianize the feature distributions, a 
simple approach is to take the log of the MLP outputs. Figure 
3 shows the feature distributions of the log MLP outputs for 
the same three classes of the same three MLP output 
components. In the remainder of this paper we will refer to the 
log MLP outputs as the MLP features. 
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Figure 1: Feature distributions of the first three PLP 
components for three classes, /ah/(triangle), /ao/ (star), 

and /aw/ (circle). 
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Figure 2: Feature distributions of the three MLP 
components corresponding to the three classes, 

/ah/(triangle), /ao/ (star), and /aw/ (circle).  

The typical distribution of the in-line component of the 
MLP feature is concentrated close to 0 and tapers away 
gradually, which is due to the compression of the high 
posteriors close to 1 and the expansion of low posteriors by 
the logarithm. The typical distribution of an off-line 

component is close to a single Gaussian centered at a high 
negative number, which is expanded by the logarithm from the 
narrow posterior distribution close to zero. Two typical 
distributions of the log in-line and off-line components are 
shown in Figure 4. These distributions in Figures 3 and 4 
should be easier to model with Gaussian mixture models. 
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Figure 3: Feature distributions of the log MLP outputs. 

 

 

Figure 4: Typical distributions (histogram) of an in-
line (left) and an off-line (right) MLP feature component. 

Besides making the feature space more regular, the MLP 
feature can reduce the variation among speakers. Speaker 
variation is one of the major sources of within-class variation 
that degrades acoustic models. We compute PLP features with 
per-speaker (in practice, per-conversation-side) vocal tract 
normalization, where piece-wise linear frequency warping for 
each speaker is used to reduce speaker variation [10]. This 
VTLN is important but still leaves much speaker variability 
due to factors other than frequency warping. MLP features, 
trained with different speakers for the same target, can decrease 
this. PLP features for the same class from different speakers 
may be located in a different point in the PLP feature space, 
but may have similar class posterior probability, and thus be 
transformed to the same point after MLP transformation. In 
other words, posteriors are by nature speaker independent, if 
the training is speaker balanced instead of biased. A way to 
show this is by looking at the variances of speaker adaptive 
training (SAT) transforms among speakers, since differences 
on SAT transform could be used to represent speaker 
differences [4]. An SAT adaptation matrix was computed for 
each speaker on the concatenation of PLP features of 39 
dimensions (13 static and their first and second derivatives) 
and MLP features (orthogonalized and truncated) of 25 
dimensions, where all the feature components are normalized 



to zero mean and unit variance. If there is no speaker variation, 
then all the SAT transforms should be the same; otherwise, 
they differ. Figure 5 shows the variances of every component 
of the SAT transform matrix among different speakers. The 
first 39 by 39 block of the SAT transform matrix has high 
variances, which means more variations among speakers in the 
PLP feature, but the next 25 by 25 block has much smaller 
variances, which means small variation among speakers. The 
ratio of the average variance of PLP block and the MLP feature 
block is 1.6.  
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Figure 5: Variances of all elements in the SAT 
transform among different speakers.  

While MLP features are being used here as HMM 
observations, they still have the properties of (log) phone 
posterior estimates. This makes it possible to combine 
different MLP outputs trained with same targets but different 
inputs to improve the features without increasing the total 
feature dimension. These MLPs may emphasize different 
aspects of the target class, so a combination may yield further 
improvement. In practice, we use two types of MLPs and 
combine MLP outputs using a weighted sum, where the 
weights are a normalized version of the inverse entropy [7]. 
The two types of MLP features are the PLP-MLP feature and 
the TRAP (or HATs) feature [2], which offer complementary 
information on the phone class. The first of these incorporates 
inputs from roughly 100 ms of speech (using 9 sequential PLP 
cepstral vectors as input), and the second uses 500 ms of input 
(from critical band energy trajectories). 

2.2. Using MLP Features with PLP Features 

Using MLP feature alone as in the tandem scheme has been 
discussed in papers such as [5]. To fully take advantage of the 
benefit together with regular features such as PLP feature, we 
combine PLP features with MLP features.  

A simple way to combine PLP and MLP features is to 
concatenate them. The resulting feature can be as long as 
39+46=85, where 39 is the dimension of PLP feature and 46 is 
that of MLP feature. The resulting feature vector could contain 
significant redundancies, and so a dimensionality reduction 
was considered. Two approaches were tried. KLT was applied 
to the MLP features and the components corresponding to the 
smallest eigenvalues were truncated. Another approach was to 

apply a more complicated linear feature transform, HLDA, to 
search for the best non-trivial feature mapping direction and 
discard the nuisance dimensions [3][10]. With KLT, by 
keeping the components corresponding to the highest 17 
eigenvalues, the remaining dimensions had 95% of the total 
original feature variances. Keeping the most significant 25 
dimensions after KLT covered 98% of the total original 
variance. Including all dimensions doesn’t always improve 
ASR, but a truncated feature often gave better results. Further 
decreasing the dimension of the MLP feature to less than 15 
was found to hurt ASR performance.  

A critical detail that we found to be important for ASR 
with long feature vectors was to modify the acoustic modeling 
parameters. In particular, we found it useful to optimize a 
scale factor on the log likelihood associated with the 
individual Gaussians in the mixture (Gaussian weight). For a 
longer feature, log likelihood has a larger dynamic range, and 
the Gaussian weight should be tuned to a much lower number 
such as 0.3 instead of 0.8, which was the best tuned value to 
fit PLP features with 39 dimensions.  

When VTL normalized PLP is used as an HMM feature, 
per-speaker mean and variance normalization is still helpful. 
We also use per-speaker mean and variance normalized PLP 
feature to train MLPs and to generate MLP features. The MLP 
feature is then normalized globally to zero mean and unit 
variance after KLT or HLDA before being used as an 
observation for the HMMs.  

An extra per speaker normalization after MLP 
transformation was still helpful, apparently reducing some 
speaker variation left after the mean and variance 
normalization before the MLP based nonlinear transform. This 
is not a property of linear transforms, for which a previous 
per-speaker mean and variance normalized feature will still be 
per-speaker normalized, if the transform matrix is properly 
scaled.  

The SRI Decipher system [10] was used to conduct 
recognition experiments. Table 1 shows the ASR results in 
word error rate on the NIST 2001 Hub-5 test set. The training 
set contained about 68 hours of conversational telephone 
speech (largely Switchboard) data. Gender dependent HMMs 
were trained with a maximum likelihood criterion, and a 
bigram language model was used in the decoding. The MLP 
feature dimension was reduced from 46 to 25 using KLT or 
HLDA. Baselines are PLP with first 2 derivatives (PLP) and 
PLP with the first three derivatives followed by HLDA to 
reduce to 39 dimension (referred to as PLP2); previous 
experience had suggested that incorporating more than two 
derivatives without HLDA was not useful. Results show 6-
10% error reduction by adding MLP features, and an extra 
per-speaker mean and variance normalization after the KLT on 
the MLP feature further reduced errors. The last two rows 
show results by adding MLP feature trained with PLP 
(PLPMLP) and HATs as individual rather than combined 
MLP features. Clearly the combination of MLPs focusing on 
long term and short term gives lower WER. 

The features were further tested with MLLR adaptation, 
where three adaptation transform matrices were computed for 
each speaker to reduce the difference between the testing 
condition of the speaker and the trained HMMs. Table 2 
shows that the MLP features work well with MLLR. We were 
not able to make HLDA work as well as the simpler KLT with 
MLLR. Thus, KLT based truncation became our choice for 
MLP features, which is used in the experiments in Section 2.3. 



Feature Word Error Rate 
(Relative error reduction) 

PLP baseline 39.1 

PLP + MLP-KLT25 35.2    (10%) 

PLP2 (*) baseline 37.2 

PLP2 + MLP-HLDA25 34.4   (7.8%) 

PLP2 + MLP-KLT25 34.8   (6.5%) 

PLP2 + MLP-KLT25-spknorm 34.0   (8.6%) 

PLP2+PLPMLP-KLT25-spknorm 36.1   (3.0%) 

PLP2+HATs-KLT25-spknorm 36.0   (3.2%) 

Table 1: Word error rate on NIST 2001 Hub-5 test set 
with PLP baseline and PLP plus different MLP features. 

(* PLP2 is PLP with three derivatives plus HLDA.)  

Feature WER (Error reduction) 

PLP2 baseline 35.8 

PLP2+ MLP-HLDA25 33.9  (5.3%) 

PLP2+ MLP-KLT25 33.4  (6.7%) 

PLP2 + MLP-KLT25-spknorm 32.6  (8.9%) 

Table 2: Word error rate on NIST 2001 Hub-5 test set. 
MLLR adaptation is used on PLP2+MLP feature.  

2.3. Using a Better LVCSR System 

A key question is whether the front-end based techniques 
described here provide error reductions that are redundant or 
complementary with more advanced backend techniques, i.e., 
more powerful acoustic modeling and decoding techniques, 
which are used in state-of-the-art LVCSR systems. Impressive 
improvements provided in simple systems can often disappear 
with more powerful systems. To address this concern, we used 
versions of the SRI system that included discriminative 
training using a maximum mutual information (MMI) 
criterion, a 4-gram language model and duration model based 
rescoring (4G-LM), and system combination (ROVER) with 
MFCC-based ASR [10]. A related concern was whether 
improvements could still be observed when more training data 
is used.  

Table 3 shows the recognition results with the improved 
system. To save time, the gender-dependent experiment was 
only conducted on male data (although spot checks with 
females showed similar results). A full-fledged LVCSR system 
was trained using 200 hours of male Switchboard data, but 
MLPs were trained with 128 hours of male speech. Results 
show that the relative error reduction due to adding MLP 
features can carry through to the improved system.  

 3. Summary and Conclusion 

Using MLP features can improve ASR performance on a large 
conversational telephone speech recognition task, even when 
large amounts of training data, discriminative training (MMI) 
and other system enhancements are used.  

MLP features provide a data-driven front-end approach to 
feature extraction that improves discrimination and ease of 
modeling. They are optimized to approximate phone 
posteriors. The MLP is trained discriminatively, can reduce 
speaker variability that is irrelevant to word recognition, and 

can generate feature distributions that are easily modeled by 
Gaussian mixture-based HMMs.  

Experiments show that MLP features offer unique benefits 
that appear to be complementary to those provided by other 
techniques such as MMI based discriminative training and 
system combination. When properly used, MLP features can 
improve ASR performance in the conversational telephone 
LVCSR task significantly by reducing errors from 5% to 9%. 

 

ASR System PLP2 + MLP Error reduction 

MMI 30.8 28.6 7.1% 

MMI+ 4G-LM 25.6 23.5 8.2% 

+System ROVER 24.5 23.0 6.1% 

Table 3: Male WERs and relative error reductions on 
NIST 2001 Hub-5 set with the improved system.  
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