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Abstract

We propose a method to improve speaker recogni-
tion lexical model performance using acoustic-prosodic
information. More specifically, the lexical model is
trained using duration- and pronunciation-conditioned
word N-grams, simultaneously modeling lexical informa-
tion along with their acoustic and prosodic characteristics.
Support vector machines are used for modeling and scor-
ing, with N-gram frequency vectors serving as features.
Experimental results using NIST Speaker Recognition
Evaluation data sets show that this method outperforms
the regular word N-gram-based lexical models. Further-
more, our approach gives additional information when
combined with a high-accuracy acoustic speaker model.
We believe that this is a promising step toward integrated
speaker recognition models that combine multiple types
of high-level features.
Index Terms: speaker verification, speaker recognition,
lexical modeling, SVM

1. Introduction

Speaker verification systems aim to automatically detect
whether the person who is speaking matches the given
name on the basis of individual information included in
speech waveforms. Speaker verification is widely used for
forensic purposes and to control access to services such
as voice dialing [1]. Speaker recognition and verification
systems have been traditionally based on acoustic features,
such as cepstral features, typically modeled using Gaus-
sian Mixture Models (GMMs) [2], and these systems have
been evaluated using only very short segments of speech.
While such features are proven to be extremely useful,
acoustic models are known to be sensitive to channel mis-
match and environmental noise.

Recently, higher-level stylistic features have become
more popular as official evaluations have started to in-
clude longer test conversations and higher-level features
have been shown to improve performance when combined
with acoustic features [3]. Among the higher-level fea-
tures investigated are prosodic features, such as pitch, du-
ration, and energy characteristics [4], and lexical features,
such as word and phrase (N-gram) frequencies [5]. These

stylistic models are by definition more robust to channel
mismatch and environmental noise, and, if based on suf-
ficiently accurate speech recognition, can be expected to
perform better under those conditions. Even under clean
acoustic conditions, stylistic models can capture informa-
tion that is complementary to short-term spectral features.

Previous work on higher-level features for speaker
recognition typically focused on building separate models
using different types of features, followed by score-level
combination. For example, in our earlier work we em-
ployed different models for acoustic, lexical, and prosodic
features and combined them using a neural network [4].
An alternative approach is to use complementary features
in a single speaker model, assuming that classifier training
can find the best way to combine them. In this paper, we
focus on the lexical N-gram model and investigate ways
to integrate it with certain kinds of acoustic and prosodic
information. More specifically, the lexical model is ap-
plied to duration- and pronunciation-conditioned word N-
grams. We see this as a first step toward building more
integrated speaker recognition models.

Earlier work is summarized in Section 2. In sec-
tions 3 and 4, we describe duration- and pronunciation-
conditioned N-gram models, respectively. Section 5
presents experiments and results.

2. Previous Work

Early work on using lexical information in speaker recog-
nition is described in [6], but did not produce significant
gains presumably due to the short training and test du-
rations used at the time. In 2001, Doddington proposed
using a model with only word unigrams or bigrams [5]
and showed it to give promising results when applied to
full conversations. The model was based on a conven-
tional log-likelihood test, in which the log of the ratio of
speaker and background model likelihoods is averaged for
all N-grams in an utterance, indexed by j:

Score =

∑
j log

ΛSpeaker(j)
ΛBackground(j)∑

j 1

It was shown that performance improved steadily as
the amount of training data per speaker increases, and us-
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ing only a small subset of N-grams resulted in performance
similar to that of using all N-grams.

Following this study, other researchers focused on
combining the lexical model with existing acoustic mod-
els, as well as improving the model. Andrews et al. applied
the N-gram frequency modeling framework to phone N-
grams obtained from a phone recognizer [7]. Since the
phone recognizer is unconstrained such an approach cap-
tures discretized acoustic properties, as well as idiosyn-
cratic pronunciations. A combination of both lexical and
phonetic models with a conventional GMM-based cepstral
system showed significant improvements.

Recently, Baker et al. showed that the lexical and pho-
netic N-gram frequency models can be improved by train-
ing the speaker model via maximum a posteriori (MAP)
adaptation of a background model [8]. They also showed
the effectiveness of this approach when smaller amounts
of speaker-dependent data are available [9].

Meanwhile, Campbell et al. proposed a way to model
phone N-gram frequencies in the support vector machine
(SVM) framework [10]. A similar approach for word
N-grams was shown to be superior to log-likelihood ra-
tio modeling and employed in SRI’s 2004 NIST evalua-
tion system [4], giving improvements in combination with
acoustic and prosodic speaker models. In the SVM for-
mulation, speaker verification is treated as a binary clas-
sification task, and relative frequencies of word N-grams
(possibly scaled or normalized) are used as features. All
the N-grams appearing more than twice in the background
training data were included as features, and no smooth-
ing or boosting was employed. A lexical SVM model
combined with combined with a cepstral GMM system
reduced equal error rate (EER) on the NIST 2004 eval-
uation set by 11% over the cepstral system alone, in the
1-conversation-side training condition, and by 50% in the
8-side condition.

SRI also investigated the effect of using state, phone,
and word durations for the speaker verification task, em-
ploying GMM log-likelihood ratio models [11]. Such
models gave an additional 12% error reduction with com-
bined with both cepstral GMM and the Doddington word
N-gram model. On the NIST 2004 evaluation task, the
word duration model was shown to be almost as accurate
as the SVM N-gram model [4]. The cepstral, lexical, du-
ration, and additional prosodic models together achieved
more than 60% error reduction over a cepstral GMM by
itself.

3. Duration-Conditioned Word N-gram
SVM System

The duration-conditioned word N-gram-based SVM sys-
tem aims to model speaker-specific word usage patterns
combined with differences in the durations of frequent
words. Following earlier work, our approach is to treat
the N-gram frequencies of each conversation side as a fea-

ture vector that is classified by a speaker-specific SVM.
Word durations are binned and different bins are counted
separately.

The duration-conditioned word N-gram SVM system
is constructed as follows: All instances of the most fre-
quent 5000 word types (as optimized on a development
set) are binned into two categories, “slow” and “fast”,
with respect to their duration. Durations are measured
according to the acoustic alignments of the speech rec-
ognizer (ASR) output, and are therefore subject to ASR
errors, just like the word labels themselves. Then, each
of word w is labeled as either wslow or wfast for the pur-
pose of computing the N-gram frequencies. Word types
outside of the top 5000 are not differentiated according to
their duration. with more than these two bins

N-grams were chosen for inclusion in the model
based on frequency in the background training data. The
background set comprised 1971 conversation sides from
the Fisher corpus, Switchboard-2 NIST SRE 2003 data,
Switchboard-2 Phase 5 data. N-gram lengths up to
3 were considered. Based on results with Fisher and
Switchboard-2 test data, we retained all N-grams occur-
ring at least 5 times in the background set, for a total of
about 600,000 N-gram types.

The relative frequencies of the N-grams in a conversa-
tion side form a (typically sparse) vector of feature values.
The values are then rank-normalized to the range [0, 1],
using the background data as the reference distribution.
The SVM was trained using a linear kernel, with a bias of
500 against misclassification of positive examples to com-
pensate for the imbalance of positive (target speaker) and
negative (background) samples. This weight is due to the
big mismatch in the number of examples for each class.
The signed distance from the SVM decision boundary was
used as the speaker verification score, and was normalized
using T-NORM [12]. Normalization statistics were ob-
tained from 248 Fisher speaker models.1 The same set of
T-NORM speakers is for both 1-side and 8-sides training
conditions.

4. Pronunciation-Conditioned Word
N-gram SVM System

The pronunciation-conditioned word N-gram SVM sys-
tem aims to model speaker-specific word usage patterns,
represented via pronunciations of the words instead of
their surface forms. Similar to the duration-conditioned
lexical model we treat the N-gram frequencies of each
conversation side as a feature vector that is classified by a
speaker-specific SVM.

The pronunciation-conditioned word N-gram SVM
system is built in a very similar fashion to the duration-
conditioned lexical model. The only difference is that

1Fisher test conversations were trimmed to 2.5 minutes to better
match the average amount of data in NIST SRE data.
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Baseline Duration-Conditioned
EER (%) DCF (x10) EER (%) DCF (x10)

Fisher-1 23.14 0.817 19.49 0.743
Fisher-2 21.01 0.734 18.29 0.673

NIST 2004 1-side 23.19 0.787 20.52 0.779
NIST 2004 8-side 10.93 0.505 10.20 0.486

NIST 2005 1-side 24.58 0.860 21.51 0.785
NIST 2005 8-side 11.25 0.484 9.03 0.389

NIST 2006 1-side 25.63 0.842 23.46 0.815
NIST 2006 8-side 11.14 0.515 9.95 0.446

Table 1: Comparison of the baseline and duration-conditioned lexical models for various evaluation data sets.

Baseline Pronunciation-Conditioned
EER (%) DCF (x10) EER (%) DCF (x10)

NIST 2004 1-side 23.19 0.787 21.29 0.802
NIST 2004 8-side 10.93 0.505 10.49 0.568

Table 2: Comparison of the baseline and pronunciation-conditioned lexical models.

word instances, and hence word N-grams, are differenti-
ated by their pronunciations (phone strings) in the ASR
output. In our dataset, on the average there are 1.4 pro-
nunciation alternatives per word as determined by theASR
dictionary. Every N-gram that occurs at least five times in
the same background set is included in the N-gram vocab-
ulary of the system, yielding a total of 200,000 N-gram
types. As before, the feature values are rank-normalized
to the range [0,1], and used in a linear-kernel SVM.

5. Experiments and Results

We performed experiments using the two Fisher test sets,
as well as NIST 2004, 2005, and 2006 SRE data sets. All
SVM training and scoring was based on a modified version
of the SVM-Light toolkit [13]. Results are presented in
terms of equal error rate (EER) and minimum detection
cost function (DCF) metrics. DCF is defined as

DCF = CMD×Ptarget×PMD+CFA×(1−Ptarget)×PFA

where CMD=10, CFA = 1, and Ptarget = 0.01.
Table 1 compares the baseline lexical model with the

duration-conditioned lexical model. Performance can be
seen to improve for all cases. The relative error reductions
are typically larger for the 8-side condition. For the most
recent (2006) test set, the EER reduction is 8.5% for 1-
side and 10.7% for 8-side training. The minimum DCF
reduction is small, only 3.2% for 1-side, but 13.4% for
8-side training.

Table 2 compares the baseline lexical model with
the pronunciation-conditioned lexical model for the NIST
2004 evaluation data set. We get mixed results when using

this method. The EER reduction is 8.2% for 1-side and
4.0% for 8-side training. However, DCF increases 12.5%
for the 8-side case. These results indicate that while the
duration-conditioned model is better for 8-side training,
the pronunciation-conditioned model is worth consider-
ing only for 1-side, and prone to more missed detections
for 8-side training.

The different behavior of the two models may be due to
the data fragmentation resulting from different pronunci-
ations. Note that the fragmentation effect is limited in the
duration-conditioned model for two reasons: the number
of duration bins was set at two, and duration is modeled
only for the most frequent words. For future work we are
considering binning of pronunciations to a small number,
and limiting the pronunciation-conditioned vocabulary.

To investigate how much our new approach can
add to a state-of-the-art speaker verification system, we
combined the duration-conditioned lexical model with
a maximum-likelihood linear regression (MLLR) based
speaker verification system [14]. The MLLR system uses
the speaker adaptation transforms used in speech recog-
nition as features for speaker verification. The transforms
are estimated using MLLR, and can be viewed as a text-
independent encapsulation of the speaker’s acoustic prop-
erties. After rank-normalization the MLLR features are
modeled by SVMs using a linear kernel. For combining
the lexical model with the MLLR system, we employed an
SVM-based combiner using the individual system scores
as features.

Table 3 presents the results using the combination
of the MLLR system with the baseline and duration-
conditioned lexical models for the NIST 2006 evaluation
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MLLR only + Baseline N-grams + Duration-Conditioned N-grams
EER (%) DCF (x10) EER (%) DCF (x10) EER (%) DCF (x10)

NIST 2006 1-side 4.64 0.213 4.69 0.208 4.58 0.210
NIST 2006 8-side 2.29 0.085 2.19 0.081 2.13 0.080

Table 3: Comparison of the baseline and duration-conditioned lexical models when combined with a baseline acoustic
system.

data set. As seen, the proposed method gives slightly
better equal error rates than the baseline when combined
with the acoustic (MLLR) system. The DCF is largely
unaffected by the choice of lexical models. The largest
improvement over the acoustic-only system is seen for 8-
side training, where the equal error rate is reduced by 7.0%
relative using the duration-condition N-grams, compared
to only 4.4% relative using the baseline N-gram model.

6. Conclusions

We have shown the effectiveness of simultaneously mod-
eling lexical and acoustic-prosodic features for speaker
modeling, in the form of duration- and pronunciation-
condition word N-gram SVM systems. The experimental
results using NIST SRE data sets shows that our approach
improves up on standard lexical N-gram SVM model, and
is effective when combined with a state-of-the-art acoustic
speaker model. We hope this study will serve as motiva-
tion for an open range of possible ways to simultaneously
model multiple feature types. In future work we are plan-
ning to investigate other types of high-level information
for feature-level combination, as well as ways to mitigate
the data fragmentation problem inherent in conditioning.
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