
Towards Vocabulary-Independent Speech Indexing
for Large-Scale Repositories

Jian Shao1,2, Roger Peng Yu1, Qingwei Zhao2, Yonghong Yan2, Frank Seide1

1Microsoft Research Asia, 5F Beijing Sigma Center, No. 49 Zhichun Rd., Beijing, P.R.C
2ThinkIT Speech Lab, Institute of Acoustics, Chinese Academy of Sciences, Beijing, P.R.C

{jshao, qzhao, yyan}@hccl.ioa.ac.cn, {rogeryu, fseide}@microsoft.com

Abstract
The Out-Of-Vocabulary problem remains a challenge for

word-lattice-based speech indexing. Sub-word-based ap-
proaches address this problem effectively for small-scale tasks,
but suffer from poor precisions on large-scale databases due
to lack of strong language model constraints. We propose a
method for searching OOV queries with large-scale databases
in two steps. First, result candidates are extracted from a sub-
word-based system, ensuring a high recall. The candidates are
then refined by word-lattice rescoring aiming at a high preci-
sion. Experiments on a 160-hours lecture set show that the pro-
posed approach achieves a relative improvement of 8.7% over
the sub-word-based baseline, and 19.7% for only single-word
queries.
Index Terms: Out-Of-Vocabulary, Keyword Spotting, Word
Lattice, Phonetic Lattice, Large Scale

1. Introduction
The tremendous progress in audio compression and storage
technologies and the pervasive adoption of the Intra/Internet has
fostered a dramatic increase of the use of digital media, such
as online lecture videos, archived meetings or conference calls,
and voicemails. Search engines to deal with digital audio or
video as well as text materials become important.

Typical audio and video for the Internet and enterprise sce-
nario is still a challenge for today’s speech-recognition technol-
ogy, which achieves word accuracies of only 50-70% [1, 2, 3].
To maximize search accuracy, the probabilistic nature of speech
recognition must be considered [4]. A significant improvement
can be achieved through incorporating word confidence scores
and alternative recognition candidates by searching word lat-
tices instead of linear speech-to-text output [5, 6, 7, 8]. Word
lattices are a compact representation of word candidates and
their scores and time information.

However, these approaches do not address the problem of
queries which are not in the recognizer’s vocabulary. [9] re-
ports that for the SpeechBot system, which indexes audio from
public web sites, out-of-vocabulary (OOV) rates on the data are
very low (<1.5%), but for the queries an OOV rate of 12% is
observed.

To address this problem, researches on sub-word-based ap-
proaches [10, 11, 12] are reported. In these approaches, spo-
ken contents are transcribed by sub-word-based recognizers.
Queries are matched as combination of sub-words. By remov-
ing dependence on a pre-defined vocabulary, the OOV prob-
lem becomes a non-issue. On small-scale databases (less than
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10 hours), where recall is a higher priority in most user sce-
narios, sub-word-based approaches have shown promising re-
sults. E.g., in our previous work [12], phonetic search has
been shown to perform as well as word-based search on IN-
Vocabulary (INV) queries, and nearly maintain the accuracy for
OOV queries. However, the phonetic search system is observed
to generate significantly more false alarms and the precision
becomes unacceptable with large-scale databases. This is sup-
ported by the experiments in one of our preliminary studies be-
low. Hence searching OOV queries with large-scale databases
remains a challenge.

In this paper, we present a method for searching OOV
queries in two steps. First phonetic search is used to gener-
ate initial result candidates. A word-lattice-based rescoring is
then used to refine the confidence scores of the candidates. Our
experiments show that the proposed method achieves a 8.7%
improvement for OOV queries over a phonetic-search baseline,
and the improvement is 19.7% with single-word queries.

The rest of this paper is structured as follows. In Section 2,
we present preliminary studies to compare word-based and sub-
word-bases systems with different database sizes, and to ana-
lyze the impact of query n-grams in speech recognition on the
search performance. In Section 3, we introduce the proposed
two-stage method for searching OOV queries. Section 4 reports
experimental results and section 5 concludes.

2. Preliminary Studies
2.1. Phonetic Search vs. Word-Based Search with Different
Database Scales

Figure 1 compares phonetic search with word-based search on
different database scales. Both systems are tested on three
databases of 1.6 hours, 16 hours, and 160 hours respectively. On
each database, the same set of (INV) queries are used for both
systems (see the detailed setup in section 4.1). When database
size grows, both systems show a descending performance. This
is because with the Figure Of Merit (FOM) metric, the number
of allowed false alarms is fixed (which we believe reflects the
user requirement as the number of false alarms users can toler-
ate does not grow with larger databases). So at the same level of
recall, a higher precision is required for larger databases. Fig-
ure 1 also shows that phonetic search’s performance decreases
much more rapidly than word-based search’s. It can be ex-
pected that, with even larger database, the performance gap
between word-based search and phonetic search will become
larger. The conclusion we draw from this study is that, to deal
with large-scale databases, we really need a well-tuned Large
Vocabulary Continuous Speech Recognition (LVCSR) system,
which also means that, we need to find a solution for searching
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Figure 1: Phonetic search vs. word-based search with different
database scales. Reported are Figure Of Merit (FOM).

OOV queries with large-scale databases.

2.2. Impact of Query n-grams on Search Accuracy

Suppose that in some cases it is possible to re-run speech recog-
nition when we get an OOV query from users. Though we can
easily include the OOV word in the recognition vocabulary, it
is difficult to get well-trained n-grams for the OOV word in the
language model1. In this study, we want to answer the ques-
tion “how important is the query n-grams for search?” Table 1
shows the experimental results. The baseline LVCSR system
uses a trigram language model. We select a set of INV queries
from the vocabulary so that they all have well-trained n-grams.
Then we keep removing high-order n-grams for the selected
queries (n-grams for other words are not touched) step by step.

The results shows that, from 3-gram to 0-gram (which
means that the query unigrams are replaced with a constant, cal-
culated as the average unigrams of all words in the vocabulary),
the search accuracy degrades from 62.4% to 60.3%, which is
still acceptable. The conclusion we draw here is, we do not
need well-trained query n-grams to benefit from INV search.
It is certainly not possible to re-run speech recognition for each
OOV query, but the conclusion is helpful for the method we will
present below.

Table 1: Search accuracy vs. query n-grams. Query words are
forced to have only 2-grams/1-grams/0-grams, while all others
words still have 3-grams. Reported are FOM. Recall (REC)
listed for reference.

n-gram FOM REC
3-gram 62.4 68.1
2-gram 62.5 68.1
1-gram 61.5 67.0
0-gram 60.3 64.8

3. A Two-stage Approach for Searching
OOV Queries

Though phonetic search suffers from a poor precision on large-
scale databases, it still provides a high recall for OOV queries.
At the same time, table 1 shows, the LVCSR-based approach
provides a satisfying precision even without well-trained lan-
guage model scores for query words. Based on these two obser-
vations, we propose a two-stage approach: first generate a can-

1By query n-grams we mean all n-grams with the query either in
the history or as the predicted word.

Figure 2: System diagram.

didate result list with phonetic search, then “simulate” LVCSR
lattices as if running speech recognition with the OOV word in
the vocabulary.

3.1. System Diagram

Figure 2 shows the system diagram, which contains three major
blocks:

• Indexing: both word-based and phonetic lattices are gen-
erated;

• Pre-selection: the OOV query is searched against pho-
netic lattices to get initial candidates. Each candidate is
represented as a 4-tuple (w, ts, te, P ), with w being the
OOV query, ts and te being the start and end time, and
P being the confidence score calculated as the posterior
from the phonetic lattice. Only ntop candidates are kept
for the next step;

• Re-ranking: initial candidates are re-ranked by lattice
rescoring as detailed in the next section.

3.2. Candidates Re-ranking By Lattice Rescoring

A word lattice is a representation of the search space of a
LVCSR decoding process. Theoretically, there can be an arc
between any two time points with any word. The fact that an
arc is not present in the lattice normally means such an arc has
a bad (acoustic or language model) score and gets pruned by the
decoder.

By inserting OOV candidates into word lattices, we want to
simulate word lattices generated by running speech recognition
with a vocabulary containing the OOV word. The hope is, if the
arc will be present in the target lattice, it will get a reasonable
score. Otherwise, it is supposed to be pruned and should have a
bad score.

In our system, word lattices are generated with cross-
word triphones and a trigram language model. A node is
denoted as n = (u[n], v[n], r[n], t[n]), where t[n] is the
time, (u[n], v[n]) is the language model history, and r[n]
is the right-context phone. An arc is denoted as a =
(S[a], E[a], w[a], pac[a], plm[a]), where S[a] and E[a] are
start and end nodes, w[a] is the word hypothesis, pac[a] and
plm[a]) are acoustic and language model scores.

The algorithm to insert a candidate (w, ts, te, P ) to a lattice
is described below:

• Arc Insertion:

– collect start nodes set Ns (see fig. 3):
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∗ find both left and right closest node to ts: nsl

and nsr . If ts − t[nsl] > span or t[nsr] −
ts > span, remove the candidate;

∗ collect all nodes in the time interval (t[nsl]−
margin, t[nsr] +margin);

∗ remove nodes whose right-context phone
r[n] does not match the first phone of w2;

– collect end nodes set Ne in similar steps as Ns;

– ∀ns ∈ Ns, ∀ne ∈ Ne:

∗ calculate acoustic score with corresponding
left and right context phones, time period,
and the word w;

∗ add a new arc from ns to ne, with the calcu-
lated acoustic score and w (language model
score will be re-calculated later);

∗ if the language model history of ne is not
maintained, put ne to the set Nexpand;

• Node Expansion:

– ∀n ∈ Nexpand, duplicate n with each language
model history;

– re-calculate language model scores for all arcs, as-
suming w being a word in the vocabulary with a
constant unigram.

The candidate confidence score is then updated with the
word posterior of w against the result lattice. All candidates
are re-ranked finally with the updated confidence scores.

s e
s e

span

marginmargin

sl

sr ac lm

spanspan span
s e

Figure 3: Parameters in the arc insertion process.

4. Experiments
4.1. Setup

We evaluate the proposed method on the 160-hour MIT iCam-
pus lectures set [3]. A 18.3-hour subset is selected as our devel-
opment set for parameter tuning.

Word lattices were generated with a speaker-independent
LVCSR system [8]. Its acoustic model was trained on the 1700-
hour Switchboard “Fisher” telephony-speech set [2]. Due to
limited LM data for lectures, we partitioned the test set into
10 parts, and recognized each part with an LM trained on the

2The right-context constraint is observed to kill too many candi-
dates. In our real implementation, we took the approximation to always
keep the node with the largest forward probability, and to keep nodes
with the same right-context with this node.

Table 2: Statistics for selected keywords on development and
whole set, with single-word and phrase queries.

test set keywords all sing. phra.
whole set sim. OOV 938 427 511

real OOV 282 152 130
dev. set sim. OOV 163 68 95

Table 3: FOM results on development set for simulated OOV
queries. “Queries as INV” used as upper-bound estimation.
span=150, marge=20, ntop=40.

queries all single-word phrase
methods FOM REC FOM REC FOM REC

queries as INV 71.1 74.0 62.4 68.1 77.8 78.6
phn. search 58.3 70.2 42.7 60.4 70.3 77.8
+ re-ranking 63.5 70.2 50.3 60.4 73.8 77.8
rel. impr. 8.9 - 17.8 - 5.0 -

transcripts of the remaining 9 parts, keeping training and test
disjunct. Word error rate is 45.7%. Phonetic lattices were gen-
erated with a phonetic decoder as described in [12] with the
same acoustic model. Phoneme error rate is 58.4%.

An automatic procedure as described in [12] is used to se-
lect query keywords, this process generates both INV and OOV
queries3. Besides the real OOV queries, we “simulate” a set of
OOV queries from the INV queries by excluding those queries
from the vocabulary. Single-word queries are directly removed
from the vocabulary, while for phrase queries, the word consti-
tute with lowest unigram is removed. The purpose of using the
simulated OOV queries is that the INV query performance pro-
vides an upper-bound estimation. Table 2 lists statistics for the
selected keywords.

Search accuracies are reported in Figure of Merit (FOM),
which is defined by National Institute of Science and Technol-
ogy (NIST) as the detection/false-alarm curve averaged over
range of [0...10] false alarms per keyword per h hour. Instead
of the original h=1, we use h=data set duration. Lattice recalls
(recall of all query matches within lattice, which in an upper
bound of FOM) are listed as well for analysis purpose.

4.2. Results on Development Set

Table 3 shows experiments on the development set for simulated
OOV queries. The first line is evaluated when the queries are
in the vocabulary, as an upper-bound estimation. The second
line is the phonetic search baseline, and the third line shows
the proposed lattice rescoring. The proposed method gains a
relative improvement of 8.9% over the phonetic search baseline.
The improvement mainly comes from single-word queries. The
reason is that phrase queries are typically longer, and precisions
suffer less with the phonetic search baseline.

Figure 4 and 5 show the impact of span and margin. FOM
keeps improving by raising span and margin, as the tolerance
increased between time boundaries from phonetic lattices and
word lattices. Although larger spans and margins may have bet-
ter performance, we stop doing that as the time cost of rescoring
arcs becomes too expansive.

Figure 6 shows the effect of ntop in candidate selection.
Raising ntop increases recall, which improves FOM in the ini-

3A phrase is OOV if one of its constitute is OOV.

2152



6058.857

40.4
50.5

35

45

55

65

0 50 100 150
span

F
O

M

Figure 4: FOM vs. span on dev. set. margin=1, ntop=40.
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Figure 5: FOM vs. margin on dev. set. span=150, ntop=40.
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Figure 6: FOM vs. ntop on dev. set. span=150, margin=20.

tial stage. After ntop=40, there are too many false alarms in-
cluded in the candidate list, which makes FOM go down slowly.

4.3. Results on the Whole 160-hour Set

Table 4 shows results on the whole 160-hour set. The first block
is for simulated OOV queries. The proposed method improves
FOM from a phonetic baseline at 43.3% to 50.4% with a 16.4%
relative improvement. The improvement is larger than on the
development set. This is because the phonetic search suffer
more on a larger database from the low precision. As on the de-
velopment set, single-word queries are observed to have larger
improvement (26.2%). Compared with the INV upper-bound
(FOM 57.7), we have reduced the performance gap by half.

The second block shows results for real OOV queries. The
proposed method improves FOM from a phonetic baseline at
40.2% to 43.7% with an 8.7% relative improvement, while on
single-word queries, the improvement is 19.7%.

5. Conclusions
We presented a two-stage approach for search OOV queries
with large-scale databases. Phonetic search is used to pre-select
result candidates for OOV queries, and the candidates are then
inserted to LVCSR lattices and rescored to get updated confi-
dence estimation. Experiments on a 160-hour lecture set re-
duced the gap between OOV and INV queries by half on a
set of simulated OOV queries. With real OOV queries, a rel-
ative 8.7% improvement is achieved over phonetic search base-
line, and with single-word queries, the improvement becomes
19.7%.

The work is still an initial study towards solving the OOV
problem. The performance gap between INV and OOV queries

Table 4: FOM results on the whole 160-hour set for both simu-
lated and real OOV queries. “Queries as INV” used as upper-
bound estimation. span=150, marge=20, ntop=40.
queries all single-word phrase
methods FOM REC FOM REC FOM REC

simulated OOV queries
queries as INV 57.7 69.9 54.2 72.4 63.7 65.5
phn. search 43.3 59.1 31.7 50.3 63.2 74.3
+re-ranking 50.4 58.2 40.0 49.7 68.3 72.8
rel. impr. 16.4 - 26.2 - 8.1 -

real OOV queries
phn. search 40.2 52.8 30.4 45.8 51.6 61.0
+re-ranking 43.7 53.0 36.4 45.8 52.3 61.0
rel. impr. 8.7 - 19.7 - 1.4 -

is still not completely reduced, and further work needs to be
done on speed up the search process to make it realistic for a
large-scale search scenario.
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