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Abstract
This paper presents a summary of our research progress us-
ing decision-tree acoustic models (DTAM) for large vocabulary
speech recognition. Various configurations of training DTAMs
are proposed and evaluated on wall-street journal (WSJ) task.
A number of different acoustic and categorical features have
been used for this purpose. Various ways of realizing a for-
est instead of a single tree have been presented and shown to
improve recognition accuracy. Although the performance is not
shown to be better than Gaussian mixture models (GMMs), sev-
eral advantages of DTAMs have been highlighted and exploited.
These include compactness, computational simplicity and abil-
ity to handle unordered information.
Index Terms: speech recognition, decision trees, hidden
Markov model (HMM)

1. Introduction
Gaussian mixture models (GMMs) are used to model state prob-
ability density functions (PDFs) in most hidden Markov model
(HMM) based automatic speech recognition (ASR) systems.
These state PDFs estimate the likelihood of a speech sample X
given a particular state of the HMM, denoted as P (X|state).
The sample X is typically a vector representing speech signal
over a short time window, e.g. mel frequency cepstral coeffi-
cients (MFCC). Although some other alternatives such as artifi-
cial neural networks (ANNs), support vector machines (SVMs)
have also been studied for computing the acoustic likelihood
P (X|state), GMMs have remained the most researched and
successful choice [1].

On the other hand, while decision trees (DT) are power-
ful statistical tools and have been widely used for many pattern
recognition applications, their effective usage in ASR is limited
to state-tying prior to building context-dependent GMM densi-
ties [2]. Recently some attempts have been made to use DTs
for computing the acoustic likelihood instead of GMM [3, 4, 5].
However, only simple tasks such as digit or phoneme recogni-
tion have been explored in these works.

DTs are attractive for a number of reasons including their
simplicity, interpretability and ability to better incorporate un-
ordered information. If used as acoustic models (DTAMs), they
can offer additional advantages over GMMs as: a) they are dis-
criminative models, b) make no assumption about distribution
of underlying data, and c) are computationally very simple.

The goal of this research is to therefore explore and exploit
DTs for the purpose of large vocabulary speech recognition.
Various configuration of training DTAMs have been presented
and evaluated in this paper. Section 2 presents an overview
of the proposed acoustic models including training. Section 3
presents various ways of realizing forest which is shown to be

more robust and accurate than single DT. Section 4 presents ex-
perimental framework and evaluation of various proposed con-
figurations. Although the observed performance is not better
than GMM acoustic models, several advantages of DTAMs are
highlighted and discussed in Section 4.

2. Decision Tree Acoustic Models (DTAMs)
As mentioned above, DTAMs are used in this work to model
state PDFs estimating P (X|state). A separate binary DT is
associated with each state of the HMM1. Each DT is trained
to maximize the discrimination between the true samples (data
associated with the corresponding HMM state) and all other
(false) samples. In the following discussion, we will use the
notation P (X|true class) instead of P (X|state).

The parameter estimation process of DTs consists of a
growing stage and a bottom-up pruning stage. A binary DT
is grown by splitting a node into two child nodes. The train-
ing algorithm considers all possible splits and selects the split
that maximizes likelihood increase (ΔL) given by Eq. 1. This
choice of split is represented in the form of a question such as
〈x ≤ τ 〉where x is one of the attributes of the data (x ∈ X) and
τ is the corresponding threshold. If the number of true samples
reaching a node isN and the total number of samples (false and
true) isD, ΔL is:

ΔL = Nyes log
Nyes

Dyes
+Nno log

Nno

Dno
−N log

N

D
(1)

where, Nyes(Dyes) and Nno(Dno) are the true (all) samples
answering the split question 〈x ≤ τ 〉 in yes and no, respectively
as shown in Figure 1.

Since we are dealing with one scalar component of the rep-
resentation at one time (unlike vector questions in [4]), it is pos-
sible to perform an exhaustive search over all possible values of
x and τ to find the best question that maximizes ΔL in Eq. 1.

In this work, however, we propose to use sample mean of
data arriving at a node as the threshold value for each compo-
nent x. It is shown in Section 4 that it provides similar perfor-
mance to that of exhaustive search. Also, it is simple to compute
and has meaningful interpretation for the task of speaker adap-
tation.

The process of splitting can be continued as long as there
are split-able nodes. For a node to be split-able: a) the node
should have a minimum number of true samples, and b) the
resulting split must satisfy chi-square significance test. When a
node cannot be split any further, it is referred to as a leaf-node

1Other configuration such as one global DT for all the phonemes [4]
has not been explored in this work.
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Figure 1: A node in a decision tree is split based on a question
such as 〈x ≤ τ 〉 that maximizes likelihood of splitting (Eq. 1).

and its leaf-value provides the likelihood of sampleX as:

P (X|true class) ∝ P (true class|X)

P (true class)
=

N

D · p (2)

where p = P (true class) is the prior probability of the true
class and is given by the fraction of the true samples at the root-
node of the tree. This leaf-value is then passed to the Viterbi
decoder as acoustic likelihood.

Once a tree is fully grown, a bottom-up pruning is per-
formed in a worst-first fashion to get desired number of nodes
in the DT.

2.1. Equal Questions

One of the biggest advantage of DTAMs over GMMs is that
they can efficiently embed unordered information such as gen-
der, context etc. in the core model itself. A question of the
form 〈l == Type〉 is used for this purpose where l is one of
the attributes (e.g. gender) of the data. There are two ways in
which these questions can be implemented. If these equal ques-
tions are trained and asked in the same manner as above (Eq. 1,
Figure 1), the corresponding leaf-values would represent fol-
lowing:

P (true class|X, l = Type)

P (true class)
∝ P (X, l = Type|true class)

P (l = Type|X)
(3)

This is applicable for information such as gender where the
posterior probability P (gender = male/female|X) can be
computed after test data X is observed. The overall likelihood
P (X|true class) then can be computed as a weighted sum of
the gender-based likelihood given by Eq. 3.

2.2. Context Modeling

Since different paths during Viterbi decoding refer to different
triphone contexts 2, it is desired that the leaf-values represent
P (X|true class, l = Type). Therefore, the question is se-
lected and subsequent split is achieved differently as shown in
Figure 2. First, only the true samples are required to answer
the question and the false samples are propagated to both child
nodes. Second, the true samples for one child node are also
propagated to the other child node as false samples. Therefore,

2We use Cross-word, context-dependent expansion of word net-
works.

Figure 2: A decoding question. Note that the total number of
samples reaching both child nodes is same (D).

the total number of samples at both child nodes remains the
same. We refer to these types of questions as decoding ques-
tions. Note that child nodes created as result of decoding ques-
tions have leaf-values of the form:

P (true class, l = Type|X)

P (true class, l = Type)
∝ P (X|true class, l = Type)

(4)
The likelihood increase ΔL now is computed as Eq. 5 and

is directly comparable to Eq. 1.

ΔL = Nyes log
Nyes

D · pyes
+Nno log

Nno

D · pno
−N log

N

D · p
(5)

where, pyes and pno are prior probabilities at yes and no nodes
respectively, satisfying pyes + pno = p. These probabilities are
different and represent joint prior probability of the true class
and the context.

In this work, decoding questions are used to represent con-
text such as 〈left context == /ah/〉 or 〈right context ==
voiced〉 resulting in context untying. This untying takes place
after significant splitting based on normal acoustic questions
and therefore there is more effective data sharing across differ-
ent context classes. For example, if we define specific context
by a group of less than 5 phonemes, the 10000 leaves of the
tree for the 3rd state of the phoneme /ah/ collectively represent
around 1000 specific unique triphone contexts. The correspond-
ing number in our baseline GMM system is less than 100.

A problem with computing acoustic likelihoods using
DTAMs is that the hard yes/no decisions made at various nodes
in the tree may lead to big changes in likelihoods. This results in
step likelihood function which is not suitable for large variabil-
ity encountered in speech. A forest comprising of more than
one DTs is explained in next section which can alleviate this
problem.

3. Forest
A forest is defined as a mixture of decision trees. Mixture mod-
els benefit from the smoothing property of ensemble methods.
The likelihood of a sample X given a forest is computed as:

P (X|true class) =
X

j

Wj · P (X|Treej) (6)
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where, P (X|Treej) is provided by one of the leaf-values of
the jth tree in the forest andWj is the corresponding weight. A
number of different ways in which a forest can be realized are
presented in following subsections.

3.1. Acoustic Partitioning

In this case a partitioning of acoustic space is achieved using
one single DT and then a number of DTs are created for each
partition as explained in [3]. This technique has the advantage
that the model size does not increase with number of DTs as is
the case with ensemble methods such as bagging [6]. The train-
ing is formulated in such a way that the weights Wj represent
the prior probability P (Treej|true class). In subsequent ex-
pectation maximization EM [6] iterations, the mixture weights
Wj and the leaf-values are re-estimated.

3.2. Speaker Clustering

A statistical speaker clustering (such as [7]) is used to create a
number of clusters and a different tree is trained for each cluster.
Specifically, 4 clusters (2 for each gender) are used in this work.
Training data from only one specific cluster is used to train a
tree.

This formulation results in the weights Wj representing
posterior probability of jth cluster (P (clusterj|X)). These
probabilities are computed separately at the time of decoding
using clusters models obtained as a result of speaker clustering.

3.3. Multiple Representations

A forest can also consist of trees constructed from different
data representations. In this work, we have explored Mel cep-
strum modulation spectrum (MCMS) [8] features together with
MFCC features in the context of a forest. The motivation for
using MCMS features is that they emphasize different cepstral
modulation frequencies as opposed to first and second order
derivative features which only emphasize modulation frequen-
cies around 15Hz. The weights of these components can be
learnt at the time of training using EM algorithm.

Another approach explored in this work is to use both repre-
sentations together in single DT. Although, this approach brings
improvement in recognition accuracy without increasing model
size, the improvement is not as good as with the forest method
as shown in Section 4. Another point to note is that this concate-
nated representation may not work for GMMs due to correlation
and increased dimensionality as shown in [3]. This is another
advantage of DTAMs that they do not impose any restriction on
the distribution of feature vectors.

4. Experiments and Results
Various configurations of training DTAMs and computing
acoustic likelihoods at the time of decoding are evaluated on
the 5k ARPA wall-street-journal (WSJ) task. Specifically, we
have used SI-84 training material from WSJ0 corpus. There are
a little over 7000 utterances in this training database from 84
different speakers. For testing, we have used non-verbalized 5k
closed test-set used in the November 1992 ARPA WSJ evalua-
tion. There are 330 utterances from 8 different speakers in this
test database.

4.1. Baseline Setup

A baseline system was setup as explained in [2]. An HMM
based speech recognizer with GMM state PDFs was created us-

ing HTK [9]. The states of the HMM correspond to cross-word
triphones. All triphones have 3 state emitting states and a strict
left-to-right topology. A separate decision tree is constructed
for each state of each base class with the goal of grouping tri-
phone states into a number of equivalence classes. As a result
of clustering, there are around 12000 physical HMMs and 2753
distinct state PDFs.

MFCCs and their first and second derivatives for the 39-
dimensional vector representation of speech signal every 10ms.
A bi-gram language model was used for decoding.

4.2. DTAM Setup

Most of the system components like dictionary, language
model, HMM topology, MFCC representation etc. have been
kept exactly the same as the baseline.

The decoding also runs exactly the same as baseline except
that the observation likelihoods P (X|state) are computed us-
ing DTAMs instead of GMMs. Note that although proposed
system is context-dependent, there are only as many DTs as
there are monophone states. Each DT, in turn, can provide
context-dependent acoustic likelihood depending on the an-
swers to context questions. The context information is derived
at the time of decoding.

4.3. Memory and Computational Requirements

In GMM system, 2753 state PDFs are associated with 8-
component (16 for silence) GMM densities and each compo-
nent is characterized by a mean vector and a diagonal covari-
ance matrix. This means that there are 1.74M parameters in the
GMM system.

The number of parameters in DTAM systems is determined
by the total number of nodes in DTAMs. These parameters are
a) question thresholds and b) leaf-values at leaf nodes. No prun-
ing was applied since the model size without any pruning was
already much smaller compared to GMM system.

It should also be noted that for DTAMs, the computa-
tional complexity of likelihood computation is only logarithmic.
Therefore, as long as the number of active nodes during decod-
ing is kept comparable to the GMM system, DTAMs prove to be
much faster compared to GMMs. Similar observation was made
in [4] where number of vector operations required for DTAMs
was only 1/16 of that of GMMs for similar accuracy.

Performance in terms of percentage recognition accuracy
for various DT configurations and corresponding model-size are
presented in Table 1. Following can be observed from these
results:

4.4. Discussions

1. As expected, context information helps DTAMs (Row
1 and 2) systems the most. The difference in number
of parameters between Monophone and Triphone system
shows that nearly one-third of the questions are context
questions.

2. Context-dependent DTAMs are highly compact com-
pared to GMMs (Rows 2 and 10). Unlike the state-
tyingmechanism in GMM setup, contexts in DTAMs are
untied only after significant acoustic splitting has taken
place (generally depths 4 and lower). This results in ef-
fective data-sharing across various context classes.

3. Usingmean of the data as threshold achieves similar per-
formance to that of an exhaustive search (Rows 2 and 3)
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Table 1: Percentage Accuracy of different Methods.

System % Accuracy Number of Parameters
1 DTAM monophone 77.1 451k
2 DTAM triphone (Section 2.2) 87.1 766k
3 DTAM triphone (Exhaustive search) 87.3 855k
4 DTAM triphone MFCC with Gender (Section 2.1) 88.1 770k
5 DTAM triphone Forest Acoustic Partioning (Section 3.1) 89.1 747k
6 DTAM triphone Forest Speaker Clustering (Section 3.2) 88.1 806K
7 DTAM triphone ForestMCMS and MFCC (Section 3.3) 89.3 1.5M
8 DTAM triphone MCMS 86.7 798K
9 DTAM triphone MCMS and MFCC (concatenated) 87.5 707K
10 GMM triphone baseline 92.5 1.74M

but has the advantage of simplicity. Exhaustive search
can potentially pick fine details of the training data and
lead to over-training. Moreover, mean has meaningful
interpretation, especially, for the speaker adaptation step.

4. Inclusion of the gender information provides 7.7% rela-
tive improvement (Row 4) which is of the same order as
presented in [2] for exactly the same task using GMMs.
However, this was achieved in [2] using 50% more pa-
rameters for the gender-dependent system compared to
0.5% increase in the proposed system.

5. A forest based on acoustic partitioning achives best per-
formance among various configurations explored in this
work. The number of parameters in this forest is simi-
lar to that of a single decision tree. Therefore it has no
computation or memory overhead at the time of decod-
ing. However, training of a forest required more com-
putation since an iterative estimation of tree weights and
their contributions have to be performed.

6. Clustering (Row 6) shows improvement over a sin-
gle DT (Row 2) but not over a random forest (Row
5). One possible reason for this is that cluster weights
P (clusterj|X) have to be estimated at the time of de-
coding. This estimation is prone to mismatch between
training and test data. Moreover, same weights are used
for all the trees (phonemes). It is also interesting to
see that this performance is similar to that of gender-
dependent system (Row 4).

7. A multiple representation forest (Section 3.3, Row 7)
performs better than both of the individual representa-
tion trees (Rows 2 and 8). It also performs better than the
tree obtained using concatenated representation (Row 9).
The number of parameters is now almost doubled.

8. Concatenated representation (Row 9) can be used in
DTAM framework although components of the repre-
sentation are correlated. The resulting system has even
smaller number of parameters and improved perfor-
mance over individual systems (Rows 2 and 8).

9. None of the DTAM configuration can achieve as good
performance as that of GMMs (Row 10). We are looking
at several ways in which the performance of DTAMs can
be improved such as a) employing vector valued ques-
tions at various nodes in the tree, b) growing one big
single tree for all classes leading to even better data shar-
ing and discrimination among classes and c) making soft
decisions at various nodes. The findings of these experi-
ments will be reported in future.

5. Conclusions
Various methods of using decision tree based acoustic mod-
els in speech recognition have been presented in this paper.
Techniques for training decision trees as well as acoustic like-
lihood computation have been presented for this purpose. Un-
ordered information such as context and gender were integrated
in the acoustic models and analysis showed that such informa-
tion is better handled in DTAMs than in GMM framework. Sev-
eral ways of realizing forest of decision trees were explained
and evaluated. Forest based on acoustic partitioning achieves
the best performance among various configurations explored
in this work. Although this performance was not as good as
GMMs, several advantages of using DTAMs have been high-
lighted. These advantages include a) compactness, b) computa-
tional simplicity, c) ability to effectively incorporate unordered
information, and d) effectiveness with multiple representations
regardless of dimensionality and distribution. We are investi-
gating more techniques to make decision tree acoustic models
as robust and accurate as GMMs while maintaining these ad-
vantages.
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