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Abstract 
In this paper, we introduce a multi-stage decoding algorithm 
optimized to recognize very large number of entry names on a 
resource-limited embedded device. The multi-stage decoding 
algorithm is composed of a two-stage HMM-based coarse 
search and a detailed search. The two-stage HMM-based 
coarse search generates a small set of candidates that are 
assumed to contain a correct hypothesis with high probability, 
and the detailed search re-ranks the candidates by rescoring 
them with sophisticate acoustic models. In this paper, we take 
experiments with 1-millions of point-of-interest (POI) names 
on an in-car navigation device with a fixed-point processor 
running at 620MHz. The experimental result shows that the 
multi-stage decoding algorithm runs about 2.23 times real-
time on the device without serious degradation of recognition 
performance. 

 
 

Index Terms: speech recognition, multi-stage decoding 

1. Introduction 
One of the rapidly increasing markets of speech recognition is 
a car. As the most natural human interface, speech can provide 
a convenient and safe way to control in-car equipments such 
as a car audio device, a navigation system and so on. However, 
in order for speech recognition to survive as a practical user 
interface, it has to overcome several obstacles. Most of all, it 
has to work robust irrespective of various noise conditions and 
speaker variations, and it also responses fast on most low 
performance in-car devices. Among these issues, we discuss 
fast speech recognition to recognize 1-millions of POI names 
for voice destination entry (VDE) on a car navigation system. 
VDE is a feature that enables users to select destination by 
saying where to drive instead of keying in the address. In 
Korea, it prefers to select destination by saying POI or 
landmark names than saying its address. It is a challenging 
task to develop a speech recognition system that can cover 
whole POIs because there are about 3.3 millions of POI names 
in Korea[1]. As a first step to solve this problem, we discuss 
about fast decoding algorithm in this paper. 

In general, fast decoding algorithms are broadly classified 
into one of two categories. The first category is a method to 
reduce the complexity of the state output probability 
computation, and the second is a method to reduce search 
space. The first category is divided into two subcategories, 
acoustic space selection and fast Gaussian evaluation. 
Gaussian selection [2] and GMM selection [3] are included in 
the acoustic space selection, and sub-vector quantization [4] 
and sub-space distribution clustering HMM (SDCHMM) [5] 
are in the fast Gaussian evaluation category. The second 
category reduces search space through a multi-pass search 
strategy. The most representative of this category is the fast 
match [6]. In this approach, computationally inexpensive 
acoustic models are initially used to produce a reduced search 
space represented as the N-best hypotheses or a word lattice 

and then a detailed match using more sophisticated acoustic 
models re-ranks the hypotheses. 

In this paper, we use a multi-stage decoding algorithm to 
maximize the recognition speed. The algorithm is composed of 
a two-stage HMM-based coarse search and a detailed search. 
The algorithm has common architecture with human speech 
recognition (HSR) in that speech recognition has completed 
through a three stage decoding procedure: acoustic feature to 
phone conversion, phone to word conversion and rescoring [7]. 
The contribution of this work is to present another statistical 
framework to handle HSR especially from the aspect of fast 
decoding. 

The remainder of this paper is organized as follows: In 
Section 2, we review the computational complexity of Viterbi 
decoding algorithm in CDHMM-based speech recognition. In 
Section 3, we give a brief overview of general multi-stage 
decoding algorithm. In Section 4, we describe the proposed 
multi-stage decoding algorithm in detail. We give 
experimental results on a 1-millions of Korea POI task domain 
in Section 5. 

2. Complexity of Viterbi decoding 
In CDHMM-based speech recognition, where the state output 
probability is represented as a mixture of Gaussian probability 
density functions, recognition is a process to find an optimal 
word sequence �� = �1, �2, … , �� which produces maximum 
a posterior probability for an observation � = �1, �2, … , ��  as 
follows: 
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where  � is a sequence of subwords comprising �, 
(�|�) is 
acoustic model which is modelled with CDHMM, 
(�|�) is 
pronunciation model and 
(�) is language model. The 	
��	���	��{}  operation is usually implemented with 
Viterbi decoding algorithm, and the complexity is defined as 
follows[13]: 
 �((� + �)��)                               (2) 
 
where �  is the total number of sates comprising all word 
models, � is the number of previous states, � is the number of 
operations to compute the state output probability and � is the 
total number of frames. As described previously, there are two 
directions to accelerate the recognition speed: one is to reduce 
the complexity � and the other is to reduce the search space ��. In this paper, we adopt multi-stage decoding algorithm to 
exploit both search space and complexity reduction. In multi-
stage decoding, the first stage decoding drops feature rate from 
analysis-frame rate to phonetic segment rate, and also reduces 
multi-dimensional input vector to a single-dimensional scalar 
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by performing phone recognition. The second stage decoding 
is a kind of lexical access that generates N-best candidates 
having the minimum edit distances for an input phone 
sequence or lattice. 
 

3. Multi-stage decoding algorithm 
Fig. 1 depicts the block diagram of multi-stage decoding [7]. 
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Input Speech

Search

N-best
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Fig. 1: A block diagram of general multi-stage decoding 

 
For an input feature sequence, automatic phone recognition 
(APR) decodes the feature sequence into a phone lattice. The 
resultant phone lattice may contain errors such as substitutions, 
insertions and deletions. There can be even no canonical 
phone sequence in the lattice due to the limitations of the APR 
performance. The second stage recovers N-best candidates 
from the error-prone phone lattice, where probabilistic edit 
distance is used for distance measure between two phonetic 
symbol strings. The evaluation stage rescores the N-best 
hypotheses and then generates re-ordered results. 
The multi-stage decoding algorithm is virtually based on the 
assumption that probabilistic knowledge sources such as 
acoustic, pronunciation and language model, are independent 
each other, and then final results can be decoded by applying 
individual knowledge sources at each stage as follows: 

 	�������� ����� ��������:           �� = 	
��	��
(�|�)      !
������	���� ����� ��������: �� = 	
��	��
(��|�)    �	���	�� ����� ��������:           "̅ = 	
��	��
(�� )     (3) 
 
It seems not easy that multi-stage decoding outperforms the 
typical 1-pass decoding if same knowledge sources are used 
due to the knowledge independence assumption, but this 
assumption can provide a systematic framework to exploit 
various knowledge sources in decoding stage without 
demanding work to revise a decoding module [11].  
In this paper, we deal with the multi-stage decoding algorithm 
from the aspect of fast decoding. Multi-stage decoding can be 
treated as a combination of coarse search and detailed search, 
where APR and lexical access as coarse search and rescoring 
as detailed search. 

4. Two-stage HMM-based Coarse Search 
Fig. 2 shows the block diagram of the multi-stage algorithm 
customized for fast decoding.  
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Fig. 2: A block diagram of the proposed multi-stage decoding 

The proposed algorithm is composed of a two-stage HMM-
based coarse search and a detailed search. The coarse search is 
composed of SDCHMM-based automatic phone recognition 
(APR) and discrete HMM (DHMM)-based lexical access, and 
the detailed search is CDHMM-based triphone rescoring. 
The difference of the proposed decoding algorithm is that we 
use a single phone sequence as an input to lexical access and 
implement lexical access with DHMM framework instead of a 
phone lattice and dynamic programming. 
We showed that there is little degradation of lexical access 
even if using a single phone sequence instead of a phone 
lattice from the aspect of N-best performance, but it gives 
much faster results [12]. Assuming that error-prone phone 
results as an observation sequence for reference words, it is a 
typical noisy channel problem and we use DHMM in 
estimating the channel characteristics. 
  

4.1. SDCHMM-based APR 
The role of APR is to reduce both feature frame rate and 
feature dimension while minimizing the loss of information 
for fast and accurate next stage decoding. In order to achieve 
the goal with memory efficiency, we use SDCHMM-based 
automatic phone recognition system. 47 context-independent 
phones including silence are modeled with SDCHMMs. Each 
phone is first trained with a 3-state left-to-right CDHMM, and 
then all of the CDHMMs are transformed into SDCHMMs 
where a one-dimensional feature is put into one stream. 
A single phone sequence as a result of APR implies reduction 
of search space and feature dimension. It reduces search space 
by dropping feature frame rate from every speech analysis 
frame to phonetic segment rate, and reduces feature dimension 
by representing phonetic segment with a 1-dimensional phone 
symbol. Fig. 3 shows an example of phone segmentation as a 
result of APR for an utterance spoken as /school/ in Korean. It 
shows that frame length reduces from 100 to 7, and it means 
that complexity of next stage can be reduced from �$(� +�)� ∙ 100&  to �$(1 + �)� ∙ 5& , where silence parts are 
excluded in lexical access. 
 

sil p E xg G o sil  
Fig. 3: An example of phonetic segmentation 

 

4.2. DHMM-based Lexical Access 
In DHMM-based lexical access, a recognized phone sequence 
is treated as a sequence of discrete observations. Recognized 
phone sequences probably contain errors such as substitutions, 
insertions and deletions. Most common way to estimate such 
errors is to learn phone confusion probability by collecting 
occurrence frequencies. However, in this paper, we use 
DHMM for that purpose, and we call DHMMs modeling 
phone errors as lexical model from the analogy of the acoustic 
model. 
Fig. 4 shows a DHMM topology of lexical model and the 
relationship between confusion probabilities, where 	 is a state 
transition probability and ' is a state output probability. 
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Fig. 4: DHMM-based confusion probability 

 
where � is a recognized phone, � is a reference phone, and * 
represents a null-sounding phone for insertion and deletion. 
The output probability of the 2nd state represents substitution 
probability, the state transition probability from the 1st state to 
the 3rd state denotes deletion probability and the insertion 
probability is represented by multiplication of output 
probability and self-state transition probability. To train lexical 
models, utterances are first converted into a phone sequence 
using the same APR and resultant phone sequences are aligned 
against a reference transcription, and DHMM parameters are 
re-estimated by the EM-algorithm. 
In decoding stage, lexical word models are constructed by 
concatenating DHMMs corresponding to their pronunciations, 
and Viterbi algorithm is used to find N-best candidates.  
 

4.3. Pruning Scheme 
In lexical access, we apply global path constraint and beam 
pruning to remove unlikely hypotheses. Global path constraint 
pre-excludes a part of search space by making state transitions 
being restricted to prescribed time slots. Fig 5 depicts an 
example of global path constraint where states to be explored 
are filled with grey for the recognized phone sequence of 
/school/ in Korean and its reference string. 
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Fig. 5: An example of search space reduction in lexical access 
 

5. Experimental Results 

5.1. Korean POI Task Domain 
There are about 3.3 millions of POIs used in commercial 
navigation system. For evaluation in this experiment, we select 
1 millions of POI names randomly. 
In APR and DHMM-based lexical access, context-independent 
Korean monophones are used for sub-word units, and context-
dependent triphones are trained for the detailed search. In APR, 
each context independent phone is modeled with 3-state left-
to-right SDCHMM whose state output probability is composed 
of 32 Gaussian probability density functions (PDFs). In lexical 
access, error patterns for each context independent phone are 
modeled with 1-state DHMM. In detailed search, triphones are 
modeled with 3-state left-to-right CDHMM with 16 Gaussian 
components per a state.  
We prepare three sets of speech corpus. A training corpus for 
acoustic models for APR and rescoring has 90400 utterances 
(400 males, 400 females), a training set for DHMM-based 
lexical models for the lexical access has 101,870 utterances 

(450 males, 450 females) and the test set has 1,920 utterances. 
The training corpus is collected on various driving conditions 
from idling to high speed. In testing, a speech corpus collected 
on idling and low driving speed is used. 
The speech signal is sampled at 16KHz, and the frame length 
is 20ms with 10ms shift. Each speech frame is parameterized 
as a 39-dimensional feature vector containing 12 MFCCs, C0 
energy, their delta and delta-delta feature. 
All of the decoding related algorithms are implemented with 
single precision arithmetic for fixed-point processor. 
Recognition performance is measured by word error rate(WER) 
and recognition speed by a real-time factor (xRT). It is defined 
as the division of the total recognition time by the total time of 
the speech utterances on a workstation with a single processor 
operating at 3GHz. We will also show the recognition speed 
measured on an in-car navigation device. 
 

5.2.  The Baseline performance 
As a baseline system, we use a typical CDHMM-based speech 
recognition system, where the same triphone models trained 
for detailed search are used as acoustic models and word 
models are constructed by concatenating HMMs according to 
their pronunciation. In decoding, lexical tree is constructed, 
beam threshold is set to 200.0, and a score cache algorithm is 
used to evaluate state output probability once at each frame. 
Any other fast decoding methods are not applied. Table 1 
shows the performance of the baseline system.  
 

Table 1. The performance of baseline system 
WER(%) Recognition 

time(xRT) 1-best 10-best 
15.80 6.94 4.71 

 

5.3.  The Performance of SDCHMM-based APR 
We measure the performance of APR by varying phone 
language models. Phone language models are trained from the 
3.3M POI text corpus, and syllable FSN is a finite state 
network that allows only the phone sequence which is valid to 
construct Korean syllable sequences, where C1 is a set of 19 
initial consonants, V is a set of 19 vowels and C2 is a set of 7 
final consonants. 
 

C1 V C2S S

 
Fig. 5: syllable FSN 

 
Table 2 shows the performance of APR. Even though phone 
3-gram is used, the accuracy is not high. 
  
Table 2. Phone accuracies on various phone language models 

Phone language model Accuracy (%) 
phone 1-gram 40.14 
syllable FSN 49.02 
phone 2-gram 55.46 
phone 3-gram 58.15 
 
We use results of APR using phone 3-gram as an input to the 
DHMM-based lexical access. 
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5.4.  The Performance of Multi-Stage Decoding 
DHMM-based lexical access generates 500-best candidates 
and detailed search generates final 10-best results. There are 
several parameters which affect the performance of the multi-
stage decoding.  
In detailed search, we apply the same thresholds that are used 
in measuring the baseline performance. 
In DHMM-based lexical access, there are two parameters: one 
is application of global path constraint and the other is beam 
threshold. Table 4 shows the affect of global path constraint. 
 

Table 3. Performance on global path constraint 
Path 

constraint 
WER(%) Response 

time (xRT) 1-best 10-best 
Disable 16.82 7.03 0.72 
Enable 20.80 9.79 0.35 

 
Table 4 shows the performance on various lexical beam 
thresholds in global path constraint being enabled. 
 

Table 4. Performance on lexical beam thresholds 
Beam 

threshold 
WER(%) Response 

time(xRT) 1-best 10-best 
40.0 20.80 9.79 0.35 
30.0 20.80 9.79 0.31 
20.0 22.63 10.7 0.26 
19.0 22.94 11.62 0.25 
18.0 22.63 11.93 0.24 
17.0 22.02 11.31 0.23 
16.0 22.02 11.62 0.21 
15.0 23.55 14.07 0.20 

 
Table 5 shows the response time on an in-car device with a 
fixed-point processor running at 620MHz with the same setup 
in Table 4. 
 

Table 5. Response time in a navigation device 
Beam 20.0 19.0 18.0 17.0 16.0 15.0 
xRT 2.60 2.46 2.39 2.33 2.23 2.12 

 
The proposed algorithm can achieve much faster recognition 
than the baseline system but there is a little degradation of 
recognition performance. There must be many factors which 
affect the degradation of recognition performance. However, 
confining to multi-stage decoding itself, the main cause of the 
deterioration is low accuracy of APR. Low accuracy lose too 
much information to recover correct hypothesis in lexical 
access. 
 
The proposed system is commercialized to after-market GPS 
navigation system through 2nd market-share company in Korea. 
In the system, VDE completes through two steps. Users first 
select a metropolitan city or province and then select POI in 
the selected area by voice. 8-best candidates are displayed on a 
screen and users set a destination by touching one of 
candidates. In this hierarchy interface, the maximum number 
of names to be recognized at once does not exceed 0.5 
millions and real time factor is about 1.04. 

6. Conclusions 
In this paper, we describe a multi-stage decoding algorithm to 
achieve fast recognition for very large number of entry names 
on a resource-limited device. The algorithm is configured with 
a coarse search and a detailed search. The coarse search is sub-
divided into APR and lexical access. For a fixed-frame rate 
stream of multi-dimensional feature vectors, APR reduces 
feature dimension and search space by carrying out phonetic 
segmentations, and DHMM-based lexical access generates N-
best candidates from the phonetic sequence. 
The proposed algorithm improves recognition speed minimum 
10-fold compared to the conventional systems at a similar 
level of recognition. 
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