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Abstract 
In this paper, we present a new mechanism to extract 
discriminative acoustic features for speech recognition using 
continuous output coding (COC) based feature transformation. 
Our proposed method first expands the short-time spectral 
features into a higher dimensional feature space to improve its 
discriminative capability. The expansion is performed by 
employing the polynomial expansion. The high dimension 
features are then projected into lower dimension space using 
continuous output coding technique implemented by a set of 
linear SVMs. The resulting feature vectors are designed to 
encode the difference between phones. The generated features 
are shown to be more discriminative than MFCCs and 
experimental results on both TIMIT and NTIMIT corpus 
showed better phone recognition accuracy with the proposed 
features. 
Index Terms: speech recognition, discriminative features, 
polynomial expansion, output coding, SVM 

1. Introduction 
The conventional approach for automatic speech recognition 
(ASR) is to use the short-time spectral features, such as mel-
frequency cepstrum coefficients (MFCCs), as the acoustic 
feature vectors, and a set of Gaussian mixture based hidden 
Markov models (HMMs) as the acoustic models. Model 
parameters in such acoustic models are normally estimated 
using the maximum likelihood (ML) criterion. In the past 
decade, discriminative training techniques, as opposed to ML 
modeling, were extensively studied for improved ASR 
performance [1,2,3,4]. 

As the input to ASR systems, conventional acoustic 
feature vectors, which carry spectral information of the speech 
signal, are not designed by optimizing a discriminative 
measure. In recent years, there has been much research interest 
to improve the discriminative capability of the features by 
applying linear/nonlinear discriminative transformation on the 
original features [5,6,7]. E.g, the Linear Discriminant Analysis 
(LDA) has been shown to improve discrimination in the 
speech feature space and led to improve recognition 
performance [5]. An example of nonlinear transformation is  
the hybrid connectionist-HMM systems [6] approach which 
uses discriminatively-trained neural networks to estimate the 
probability distribution among sub-word units given the 
acoustic observations. In another effort, TANDEM 
connectionist feature extraction [7] combines neural-net 
discriminative feature processing with Gaussian-mixture 
distribution modeling. Inspired by discriminative training of 
acoustic models, recent research like in feature-space MPE [8] 
and MMI-splice [9] showed that using discriminative criteria 
in optimizing feature projection function is effective to 
improve speech recognition accuracy. 

In this paper, we propose a new mechanism to extract 
features for speech recognition using discriminative feature 
transformation. A high dimensional feature space for better 
discriminative capability is constructed by polynomial 
expansion of the original acoustic features. The expanded 
features are then passed to a set of linear discriminants that 
projects the sequences of expanded vectors into a lower 
dimensional space with the objective to discriminate among 
the phone classes using output coding technique [10]. 
Differently from LDA, the extracted features benefits from a 
distribution free method which is suitable in the high 
dimensional space. As opposed to TANDEM which is a 
nonlinear transformation using multilayer perceptron (MLP) 
neural networks, we adopt linear SVMs to transform the high 
dimensional feature vectors for computational efficiency.  

The rest of this paper is organized as follows. In section 2, 
first the SVM with explicit polynomial kernel is reviewed, 
then continuous output coding is presented and the proposed 
feature transformation as a combination of the two techniques 
is described. In section 3, the experimental setup and results 
are presented. Section 4 concludes the paper. 

2. Discriminative transformation 
We are interested in creating a set of new features for speech 
recognition, each element of the feature vector representing 
the discriminative information in distinguishing one phone 
from the others.  In the proposed feature transformation 
system, the discriminative capabilities of SVM using an 
explicit sequence kernel will be combined with the continuous 
output coding (COC) technique [11]. By employing COC, we 
will be able to encode the information required to differentiate 
an individual phone from the rest in each dimension of the 
transformed feature space. In the following sections, we first 
describe the formulation of SVM with an explicit sequence 
kernel as a converter of input speech feature vectors to a scalar 
value measuring the similarity of the input frame to a phone 
and then, we illustrate the application of continuous output 
coding technique as the feature transform function. 

2.1. SVMs using explicit polynomial expansion 

SVM has shown to be effective in separating input vectors in 
2-class problems [12], in which SVM effectively projects the 
vector x' into a scalar value f(x'), 
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where yi ={-1, 1}, the vectors xi are support vectors, N is the 
number of support vectors, �i are adjustable weights, d is the 
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high dimensional space. If the explicit form of ( )φ x  is 

available, f(x') can be written as, 
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where d=[d 0 … 0]. In this new form, all the support vectors 
are collapsed down into a single model svmw which is a weight 

vector in the high dimensional space. Directly applying SVMs 
on frame-level short-time spectral features involves high 
overlapping regions, resulting in a large number of support 
vectors. This problem can be alleviated by using an explicit 
kernel with the alternate form (2) for scoring. 

In [13], an explicit kernel based upon comparing 
sequences of speech feature vectors for a measure of 
similarity, based on an expansion of short-time spectral feature 
space, has been adopted in speaker and language recognition. 
Having two sequences of short-time spectral features, 
xM={xi|i=1,…,M} and yL={yi|i=1,…,L}), a kernel was 
constructed by training on one sequence of vectors using a 
generalized linear discriminant, 
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all expanded frames of the sequence xM and R  is the 
correlation matrix derived from sequence vectors with 
different classes from target class of xM. Their system can be 
summarized as expanding the input feature vectors using 
polynomial expansion, and averaging sequences of high 
dimensional feature vectors and applying the explicit kernel, 
and finally performing classification using linear SVMs in the 
high dimensional space that showed successful results in 
speaker recognition application. 

As for the feature transformation for speech recognition in 
this paper, we are interested in creating a set of new features, 
each element of the feature vector representing the 
discriminative information in distinguishing phones, rather 
than classification decisions. For each of the speech frames 
with a short-time spectral feature vector, we map them into a 
high dimensional space via polynomial expansion. 
Subsequently, we consider a window of consecutive frames of 
length M centered around the current high dimensional frame 
vector x to form sequence xM, and then φx  is calculated over 

each sequence of consecutive frames xM. We aim at designing 
a SVM for distinguishing each of phones in speech 
recognition. Suppose ftgt(.) is output score of the SVM for the 
phone tgt. From (2) and (3), with R = I for computational 
consideration, we have: 
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2.2. Continuous output coding 

It is not straightforward using SVMs in feature 
transformation for speech recognition, as f(x') is not a 
probability. We can use SVM output scores to approximate 
emission probabilities which can be adopted as input 
features for HMMs. In this way, we consider f(x') in (4) which 
can be interpreted as the similarity between the SVM 
hyperplane and the input vector x'. The projection function is 
constructed by C SVM decision hyperplanes (e.g. linear 

discriminants), each of which trained to separate a specific 
phone from its competing phone set. In doing so, we denote 

the high dimensional vectors φx  labeled with the target phone 

as the positive set, and the rest as the negative set. If we 
consider wsvm for each trained SVM as a column of a K×C 
matrix  wCOC, where K is the dimension of the input vector φx  

and C is the number of SVMs, then the projection function 
can be written as, 

(5) .t
COC φ ′′ = xwχχχχ  

The C SVM outputs form a reduced dimensional space, 
which is also known as output coding [10]. The code size C of 
the so defined output code vector equals the number of 
phones. Output coding is a general method for solving 
multiclass problems by reducing them to multiple binary 
classification problems. It is able to correct some errors that 
individual classifiers make, thus also known as error-
correcting output coding. Typically, output codes are defined 
as discrete codes of 0 and 1. Using SVM output as the output 
coding bit b, we have b=1 if f(x) > 0, and b=0 otherwise. Some 
recent work improves the performance of output coding by 
relaxing the output codes from discrete coding to continuous 
coding [11]. Using the continuous coding means that points 
with low classification certainty contribute less to the score. In 
this paper, the continuous output coding (COC) projection 
function is implemented using (5).  

After training a set of C independent SVM classifiers 
{f1(.),f2(.),...,fC(.)} while C is the number of phones, we project 
each high dimensional input vector φx  to a vector of C real-

valued SVM outputs ={f1( φx ),f2( φx ),...,fC( φx )} which is 

considered as the proposed discriminative features for 
subsequent phone recognition problem. Figure 1 shows how 
an input vector is exposed to C different SVM hyperplanes 
each trained to distinguish an individual phone. The 
corresponding output scores of SVMs are then gathered 
together to form the COC features. To have visual illustration, 
the simple case of 2-dimensional input vectors is considered in 
the Figure.  
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Figure 1. Continuous output coding process  

Instead of original short-time spectral features, the 
resulting COC feature vectors are then fed into an HMM based 
speech recognition system. Figure 2 shows the framework of 
our proposed discriminative feature extraction system which is 
composed of three main stages. The two first steps namely, 
polynomial expansion and averaging in the high dimensional 
space constitute the explicit sequence kernel for each 
individual SVM. The third stage is the continuous output 
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coding to encode discriminative information from a set of C 
individual linear SVMs forming the proposed COC features 
for speech recognition.  
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Figure 2. Framework of discriminative feature extraction 

3. Experiments 
In this section, we evaluate the discriminative capabilities 

of the proposed COC features. The DARPA TIMIT Acoustic-
Phonetic Continuous Speech Corpus [14] and NTIMIT are 
used for the comparative study. NTIMIT is simply the TIMIT 
speech corpus which has been transmitted over a telephone 
network and re-recorded. The evaluations are conducted by 
the framewise phone classification with the high-quality 
manual phone labeling in TIMIT corpus, as well as the phone 
recognition task on TIMIT corpus. In order to assess the 
performance of COC features, we compare the results of 
phone classification and recognition using COC features to the 
results through the use of LDA features and MLP generated 
features. In the end, we investigate the robustness of the 
proposed COC features on NTIMIT corpus. 

3.1. Experiment setup 

The TIMIT corpus consists of 630 speakers, each speaker 
pronouncing 10 sentences. The 3969 sx and si sentences from 
the TIMIT proposed training set were used to train the 
phoneme models and the core test set consisted of 192 
utterances from the standard 24-speaker was used for testing. 
We followed the common practice of HMM training for 48 
phones and then mapping down to 39 phones for scoring 
purposes [15].  

For the phone recognition system, decision-tree based 
state-tying context-dependent triphone models had been used 
for the acoustic modeling [16]. Approximately 1200 tied-states 
each having 16 mixture components have been built. A 
unigram phone language model was applied to the phone 
recognition. HTK toolkit [17] was used for both acoustic 
model training and phone recognition. 

3.2. Discriminative feature vectors 

For each speech frame, a 39-dimensional feature vector is 
extracted, consisting of 12 MFCCs and normalized energy, 
plus their first and second order derivatives. Sentence-based 
cepstral mean subtraction was applied to acoustic 
normalization both in train and test data.  

To generate the proposed COC features, 39-dimensional 
MFCC vectors were expanded into high dimensional space by 
calculating all the monomials up to order 2, resulting 

(39 1) 2 1
820

+ + −

          2

	 
 =� �
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 elements of feature vector. It is expected 

that high dimensional feature vectors result in more 
discriminative capability to differ speech frames of one phone 
from others. Sequences of 9 successive frames, with 4 frames 
on each side of the current high dimensional frame, was used 
to obtain φx . The obtained 820-dimensional feature vectors 

were used to train the 48 SVMs. Each SVM was trained in the 
one phone versus rest manner. For the SVM training, the high 
quality manually time-aligned phone labels of TIMIT corpus 

were used with the SVMTorch toolkit [18]. There are about 
1.1 million labeled frames in the TIMIT training data set. In 
order to train the SVMs efficiently, the training vectors in each 
of the phone classes were quantized to 5000 centroids using k-
means clustering algorithm. After training 48 independent 
SVM classifiers, each representative vector φx  is mapped to a 

vector of 48 real-valued SVM outputs χχχχ ={f1( φx ), f2( φx ),..., 

fC( φx )} as the COC features. 

LDA features were acquired by LDA transformation on 
the nine-frame window of MFCC coefficients (9*39 
dimensional vectors). MLP features are obtained by training 
an MLP network for discriminating phone classes. The 
number of the hidden layer nodes was set to 1000 and the 
number of the input nodes was 351 (9*39 dimensional input 
vectors). Softmax-activation function was used in the output 
layer during the training, but when using the MLP output as a 
feature vector to HMM, this nonlinearity was removed 
following the study in [7]. 

3.3. Framewise phone classification 

To examine the discriminative capabilities of the COC 
features, we first conducted the framewise phone classification 
task while the classifications are made using one-versus-rest 
SVM classifiers. Figure 3 reports the experiments on different 
feature spaces, namely (i) the original MFCCs, (ii), LDA 
features (iii), MLP generated features, and (iv) the 48-
dimension COC features. It is shown that the proposed 
discriminative features clearly outperform the MFCC, LDA, 
and MLP features due to more discrimination induced by the 
feature transformation process into the feature space. 

By projecting the acoustic feature vectors into the 48 
dimensions via the output codes of 48 SVMs with each SVM 
providing the discriminative information in the phone 
classification using explicit polynomial expansion, we 
successfully increased the discriminative capabilities at the 
acoustic feature level. 
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Figure 3: Comparison of the framewise phone 
classification accuracy among different features. 

3.4. Phone recognition 

In this section, the proposed COC features are fitted in the 
common adopted HMM framework. To measure the 
performance of COC features, we compare the results of the 
baseline phone recognizer on TIMIT task using COC features 
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to the results obtained through the use of original MFCCs, 
LDA features and MLP generated features. Note that in case 
of MLP feature transformation, we have also applied an 
additional stage of reducing the 48-dimensional MLP output 
vectors to 24 components by KLT (transformation matrix 
obtained from the training data) for a better performance [7]. 
Table 1 shows the Comparison of recognition error rates using 
different sets of features. 

Table 1. Comparison of recognition error rates using 
different generated feature vectors on TIMIT task. 

Phone Recognition Phone Error 

MFCC features  29.76 % 

LDA features 29.35 % 

MLP features 28.75 % 

MLP + KLT features 28.13 % 

COC features 26.88 % 
 
The results show that COC features outperform other 

feature transformation techniques in phone recognition on 
TIMIT task. The improvement in recognition result reflects the 
effectiveness of using the proposed framework for the 
discriminative features in speech recognition systems. 

3.5. Phone recognition with NTIMIT 

In this section, we investigate the robustness of the proposed 
COC features on NTIMIT corpus. NTIMIT speech data have 
about 25dB SNR while TIMIT speech data have about 40dB 
SNR. In NTIMIT, there is also a great reduced spectral energy 
above 3.5 kHz due to telephone channel limitation. The 
recognition error rates using MFCC features and the COC 
features on NTIMIT corpus are compared in Table 2. It is 
shown that COC features outperform the MFCC features also 
in this telephone speech task. 

Table 2. Comparison of recognition error rates for NTIMIT. 

Phone Recognition Phone Error 

MFCC features  44.68 % 

COC features 42.57 % 

4. Conclusions 
In this paper, a new approach for generating discriminative 
features for speech recognition was proposed. It was based on 
the fact that the commonly used short-time spectral features 
are not designed by optimizing a discriminative measure. We 
have introduced a new technique for feature transformation 
based upon explicit polynomial expansion. In order to benefit 
from the high-dimensional features, continuous output coding 
technique was applied to project the high-dimensional features 
to a much lower feature space, so that a conventionally-trained 
HMM based ASR system can be directly adopted. It has been 
shown that the discriminative capability of feature space has 
been improved by the proposed transformation process. Its 
application on both TIMIT and NTIMIT speech data showed 
that the COC feature transformation is effective in reducing 
recognition errors. 
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