
Refactoring Acoustic Models using Variational Expectation-Maximization

Pierre L. Dognin, John R. Hershey, Vaibhava Goel, Peder A. Olsen

IBM T.J. Watson Research Center
{pdognin, jrhershe, vgoel, pederao}@us.ibm.com

Abstract
In probabilistic modeling, it is often useful to change the struc-
ture, or refactor, a model, so that it has a different number of
components, different parameter sharing, or other constraints.
For example, we may wish to find a Gaussian mixture model
(GMM) with fewer components that best approximates a refer-
ence model. Maximizing the likelihood of the refactored model
under the reference model is equivalent to minimizing their KL
divergence. For GMMs, this optimization is not analytically
tractable. However, a lower bound to the likelihood can be max-
imized using a variational expectation-maximization algorithm.
Automatic speech recognition provides a good framework to
test the validity of such methods, because we can train refer-
ence models of any given size for comparison with refactored
models. We show that we can efficiently reduce model size by
50%, with the same recognition performance as the correspond-
ing model trained from data.
Index Terms: acoustic model clustering, KL divergence, vari-
ational approximation, variational expectation-maximization.

1. Introduction
In a variety of applications, it is useful to refactor a model
by changing the number of components, parameter sharing,
or other constraints, while preserving similarity to the original
model. For example, in dynamical probabilistic models with
continuous and discrete state dynamics, the number of compo-
nents in the posterior increases over time during inference. To
make inference efficient, the posterior must be approximated.
Other applications include creating a hierarchy of approxima-
tions to a model to speed up the search for the most likely com-
ponent, or compressing an existing model to reduce its footprint
in a constrained computing environment.

Minimizing the KL divergence [1] between the reference
model and the refactored model is equivalent to maximizing the
likelihood of the refactored model under the reference model.
Unfortunately, this is intractable for models such as Gaussian
mixture models (GMMs) without resorting to expensive Monte
Carlo techniques. However, it is possible to maximize a varia-
tional lower bound to the likelihood [2].

In order to test the validity of such methods, we apply them
to an automatic speech recognition (ASR) task where we can
train reference models of any given size. ASR is a great frame-
work to experiment with model approximation because acoustic
models typically have large number of Gaussian components.

In this framework, a simple refactoring task is to take a ref-
erence model M, trained on data with |M| components, and
approximate it with a refactored model N so that |N |< |M|.
Performance is measured in terms of the difference in recogni-
tion results forM andN . In this paper, we extend the methods
of [2], introducing a new weighted local maximum likelihood
(weighted LML) algorithm. We evaluate the methods more pre-

cisely using a more consistent recognition system with fewer
approximations. We show that we can efficiently reduce model
size by 50%, with the same recognition performance as the
corresponding model trained from data, referred to as trained
model in this paper.

For other approaches, based on minimizing the mean–
squared error between the two density functions, see [3], or
based on compression using dimension–wise tied Gaussians op-
timized using symmetric KL divergences, see [4].

2. Models
Acoustic models are typically structured around phonetic states
and take advantage of phonetic context while modeling obser-
vation. Observation models are usually GMMs of the observed
acoustic features. It is customary to use diagonal covariance for
efficiency as computation time and storage are greatly reduced
compared to using full covariance Gaussians.

Let us consider the GMM f with continuous observation
x ∈ Rd,

f(x) =
∑

a

πafa(x) =
∑

a

πaN (x;μa,Σa), (1)

where a indexes components of f , πa is the prior probabil-
ity, and N (x;μa,Σa) is a Gaussian in x with mean vector
μa and covariance matrix Σa. f(x) is a probability den-
sity function, or pdf, represented as a GMM with parameters
{πa,μa,Σa}. Similarly, g(x) will refer to a GMM with pa-
rameters {πb,μb,Σb} for the rest of this paper.

3. Divergence Measures
The KL divergence [1] is commonly used to measure the dis-
similarity of two pdfs f(x) and g(x),

DKL(f‖g) def
=

∫
f(x) log

f(x)

g(x)
dx (2)

= L(f‖f) − L(f‖g), (3)

where L(f‖g) is the expected log likelihood of g under f ,

L(f‖g) def
=

∫
f(x) log g(x)dx. (4)

The KL divergence has the three following properties: it is not
symmetric as DKL(f‖g) �=DKL(g‖f), it reaches a minimum
for f = g when DKL(f‖g) = 0, and it is always positive as
DKL(f‖g)≥0 ∀f, g. For two Gaussians fi(x) and fj(x) from
GMM f(x) with x ∈ Rd, DKL(fi‖fj) has a closed–form ex-
pression:

DKL(fi‖fj) = 1

2

[
log

|Σj |
|Σi|

+Tr(Σ−1
j Σi − Id)

+ (μi − μj)
TΣ−1

j (μi − μj)
]
.

(5)

Copyright © 2009 ISCA 6-10 September, Brighton UK212

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

9-
78

For two GMMs f and g, DKL(f‖g) is unfortunately in-
tractable. One solution is to use a variational approximation
for DKL(f‖g). Since DKL(f‖g) = L(f‖f) − L(f‖g), we
need only find variational approximations for the expected log
likelihood L(f‖f) and L(f‖g).

4. Variational Likelihood
In the case of two GMMs f and g, the expression for L(f‖g) is

L
(
f‖g

) def
=

∫
f(x) log g(x)dx

=
∑

a

πa

∫
fa(x) log

∑

b

πbgb(x)dx. (6)

We define the variational parameters φb|a as a measure of the
affinity between the Gaussian component fa of f and compo-
nent gb of g. The variational parameters satisfy the constraints,

φb|a ≥ 0 and
∑

b

φb|a = 1. (7)

Using Jensen’s inequality, we obtain a lower bound for (6),

L
(
f‖g

)
=

∑

a

πa

∫
fa(x) log

∑

b

φb|a
πbgb(x)

φb|a
dx

≥
∑

a

πa

∫
fa(x)

∑

b

φb|a log
πbgb(x)

φb|a
dx

=
∑

a

πa
∑

b

φb|a

(
log

πb
φb|a

+ L(fa‖gb)
)

(8)

def
= Lφ

(
f‖g

)
. (9)

The lower bound on L
(
f‖g

)
, given by the variational approxi-

mation Lφ
(
f‖g

)
can be maximized with respect to φ. The best

bound is given by

φ̂b|a =
πbe

−DKL(fa‖gb)
∑
b′ πb′e

−DKL(fa‖gb′)
. (10)

By substituting φ̂b|a in (8), we can get the following expression
for Lφ̂

(
f‖g

)
,

Lφ̂
(
f‖g

)
=

∑

a

πa
∑

b

φ̂b|a

(
log

πb

φ̂b|a
+ L(fa‖gb)

)

=
∑

a

πa log

(∑

b

πbe
L(fa‖gb)

)
. (11)

Lφ̂
(
f‖g

)
is the best variational approximation of the expected

log likelihood L
(
f‖g

)
. It is referred to as variational likeli-

hood in the rest of this paper. Similarly, we can find the varia-
tional likelihood Lψ̂

(
f‖f

)
, which maximizes a lower bound on

L
(
f‖f

)
,

Lψ̂
(
f‖f

)
=

∑

a

πa log

(∑

a′
πa′e

L(fa‖fa′)

)
. (12)

The variational KL divergence DKL(f‖g) is obtained directly
from (11) and (12) since DKL(f‖g) = Lψ̂

(
f‖f

)
− Lφ̂

(
f‖g

)
,

DKL(f‖g) =
∑

a

πa log

(∑
a′ πa′e

L(fa‖fa′)
∑
b πbe

L(fa‖gb)

)
(13)

=
∑

a

πa log

(∑
a′ πa′e

−DKL(fa‖fa′)
∑
b πbe

−DKL(fa‖gb)

)
. (14)

Both (13) and (14) are equivalent, while (14) seems more in-
tuitive as it gives DKL(f‖g) based on the KL divergences be-
tween all individual components of f and g.

In the context of refactoring models, we can optimize the
parameters of g to better match f by minimizing the KL di-
vergence DKL(f‖g). Since the variational KL divergence
DKL(f‖g) gives an approximation to DKL(f‖g), we can max-
imize DKL(f‖g) with respect to {πb,μb,Σb}, parameters of
g. It is clearly sufficient to maximize the variational Lφ(f‖g),
as Lψ(f‖f) is constant in g. Although (11) is not easily maxi-
mized with respect to the parameters of g, Lφ(f‖g) in (8) leads
to an Expectation-Maximization (EM) algorithm.

5. Variational Expectation-Maximization
We need to maximize Lφ(f‖g), with respect to φ and the pa-
rameters {πb,μb,Σb} of g. This can be achieved by defining
a variational Expectation-Maximization (varEM) algorithm.
Previously, we found the best lower bound on L(f‖g) with
Lφ̂

(
f‖g

)
by estimating φ̂b|a. This is the expectation (E) step:

φ̂b|a =
πbe

−DKL(fa‖gb)
∑
b′ πb′e

−DKL(fa‖gb′)
. (15)

For a given φ̂b|a, it is now possible to find the parameters of g
that maximize Lφ̂

(
f‖g

)
. The maximization (M) step is:

πb =
∑

a

πaφ̂b|a, (16)

μb =

∑
a πaφ̂b|aμa∑
a πaφ̂b|a

, (17)

Σb =

∑
a πaφ̂b|a

[
Σa + (μa − μb)(μa − μb)

T)
]

∑
a πaφ̂b|a

. (18)

The algorithm alternates between the E–step and M–step, in-
creasing the variational likelihood in each step. We can test for
convergence by measuring the increase in variational likelihood
during each step, and stopping when it is sufficiently small.

5.1. Discrete Variational EM

If we constrain φb|a to take discrete {0, 1} values, and maxi-
mize the same variational objective function, we obtain an al-
gorithm equivalent to K–means clustering of Gaussians using
KL divergence as the distance measure, as in [5]. This provides
a hard assignment of the components of f to the components of
g. Let Φb|a be the constrained φb|a. In the constrained E–step,
for a given a, the optimal solution is to assign it to the b for
which φb|a is greatest. That is, we find b̂ = argmaxb φb|a, and
set Φb̂|a=1 and Φb|a=0 for all b �= b̂. The M–step remains the
same, and the resulting gb is the maximum likelihood Gaussian
given the selection of components from f provided by Φ. We
call this the discrete variational EM (discrete varEM).

213

A potential caveat of this algorithm is if no cluster is as-
signed to a component gb. This can happen, for instance, if there
are two components of g that have similar means and variances,
but different priors. It results in

∑
a Φb|a = 0 for the orphaned

b. In the M-step, this leads to a zero πb and infinite components
for μb and Σb. One solution to this problem is to delete the
orphaned component gb. This ensures that the variational like-
lihood increases with every step, but it reduces the number of
clustered components.

An alternative is to heuristically re-allocate Gaussians from
a larger cluster to the orphaned component. In this case, the
variational likelihood does not necessarily increase during the
reallocation step, but if iterated will continue to increase on
subsequent E and M–steps. We chose this approach to keep
the number of Gaussians constant when we compare across the
different techniques. In the continuous varEM, however, it is
possible that two components, gb and gb′ , converge to the same
mean and variance, which is equivalent to reducing the number
of Gaussians in g. This may set varEM at a slight disadvantage
relative to discrete varEM.

6. Weighted Local Maximum Likelihood
The variational EM algorithm is sensitive to the choice of initial
model g0. A greedy clustering approach based on local maxi-
mum likelihood (LML) was proposed in [2] to provide g0. A
cost is computed for every pair of components in the model f .
The pair with lowest cost is merged providing a new model f ′.
The algorithm iterates until the desired number of components
is reached. LML measures the divergence between a pair of
Gaussians and their resulting merge. When the Gaussian param-
eters are constrained (e.g., diagonal covariances), the selected
pair is well approximated under the constraints.

The LML cost function is as follows: consider two Gaus-
sians fi and fj with weights πi and πj , define p = πifi+πjfj ,
and consider q=merge(πifi, πjfj). q is the Gaussian result-
ing from merging the components of p. This merge can be per-
formed by using (16)–(18) and the proper Φ. Since KL diver-
gence is defined for distributions, LML defines weights π̃i =
πi/(πi + πj), π̃j = 1− π̃i, to form a GMM p̃ = π̃ifi + π̃jfj ,
and the merged Gaussian, q̃ = merge(π̃ifi, π̃jfj). LML is the
KL divergence between normalized distributions p̃ and q̃.

LML(p̃, q̃) = DKL(p̃, q̃) =

∫
p̃(x) log

p̃(x)

q̃(x)
dx. (19)

Since p̃ and q̃ are properly normalized, (19) benefits from all the
properties of the KL divergence.

We now propose to use a generalized KL-divergence in the
Bregman divergence family, as given in [6]

ĎKL(p‖q) =
∫

p(x) log
p(x)

q(x)
dx+

∫
q(x)−p(x) dx, (20)

where p and q are un–normalized. If we consider p = αp̃ and
q = βq̃ where p̃ and q̃ are normalized, then (20) becomes

ĎKL(p‖q) =
∫

αp̃ log
αp̃

βq̃
+

∫
(βq̃−αp̃)

= αDKL(p̃‖q̃) + α log
α

β
+ β − α. (21)

Since, in our case p = (πi + πj)p̃ and q = (πi + πj)q̃, then
α = β = πi + πj and (21) becomes

ĎKL(p‖q) = (πi + πj)DKL(p̃‖q̃) (22)
= (πi + πj)LML(p̃, q̃).

WER (%) vs. Model Size (K)
Models 5 10 15 20 25 30 35 40 45 50
Baseline 2.49 2.00 1.68 1.49 1.37 1.38 1.39 1.33 1.27 1.31
100K–STC 2.53 1.89 1.70 1.51 1.39 1.35 1.34 1.30 1.32 1.28
Models 55 60 65 70 75 80 85 90 95 100
Baseline 1.29 1.27 1.27 1.29 1.22 1.21 1.30 1.20 1.21 1.18
100K-STC 1.28 1.28 1.25 1.23 1.16 1.23 1.20 1.23 1.22 1.18

Table 1: WERs for baseline and 100K-STC models.

Using un–normalized distributions for LML leads to a weighted
LML of the normalized distributions. Since πi + πj > 0, all
the properties of the KL divergence hold for ĎKL(p‖q). We
use the weighted Local Maximum Likelihood (weighted LML
or wLML) as cost function with the greedy clustering described
previously to provide g0 for the variational EM.

7. Experiments
The experimental setup is very close to the one described in [2].
The same internal IBM databases were used for all our experi-
ments. The training set is composed of 786 hours of US English
data, with 10.3K speakers for a total of 803K utterances. It con-
sists of in-car speech in various noise conditions, recorded at 0,
30 and 60 mph with 16KHz sampling frequency. The test set is
38.9K sentences for a total of 206K words. It is a set of 47 dif-
ferent tasks of in-car speech with various US regional accents.

The reference model for this paper is a 100K Gaussians
model built on the training data. We use a set of 91 phonemes,
each modeled with a three-state left to right hidden Markov
model. These states are modeled using two-phoneme left con-
text dependencies, yielding a total of 1519 context-dependent
(CD) states. The acoustic models for these CD states are built
on 40-dimensional features obtained using Linear Discriminant
Analysis (LDA) combined with Semi Tied Covariance (STC)
transformation. CD states are modeled with 66 Gaussians on
average. Training consists of a sequence of 30 iterations of
EM algorithm where CD state alignments are re-estimated ev-
ery few steps of EM. We built 20 baseline models from training
data from 5K, 10K, ..., 100K Gaussians (our reference model).
All these models have different STCs and lie in different fea-
ture spaces. Since all clustered models are in the reference
model feature space, for consistency we built 20 models using
the 100K model’s STC (100K–STC). Differences in the WERs
for these models and the baseline are small, as shown in Table 1.

The results presented in this paper differ significantly from
those reported in [2], as Table 1 reveals. Indeed, the setup
in [2] was our internal product setup where, prior to decod-
ing, acoustic models are compressed using Band Quantization
(BQ), refactored for speed by integrating a hierarchy [5], and
where likelihood computation robustness is ensured [7]. These
product enhancements introduce dynamics in decoding that blur
the exact impact of refactoring the acoustic models. We pro-
vide here results on a research setup with likelihood computa-
tion without BQ, hierarchy nor likelihood robustness activated.
They are significantly better than for the product setup.

Baseline results show that the reference WER for 100K
model is 1.18%. WERs remain within 15% relative from 95K
down to 40K, then start to increase significantly below 25K. At
5K, WER increased 110% relative to 100K. We used our greedy
clustering algorithm to cluster the reference 100K model down
to 5K, saving intermediate models every 5K Gaussians, for a
total of 19 clustered models. Sets of 19 models were created

214

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Gaussians (K)

W
ER

 (%
)

LML
LML + varEM
LML + discrete varEM
wLML
from data

Figure 1: WER as a function of the number of Gaussians for
models trained from data (100K–STC), models clustered using
LML, LML with varEM and discrete varEM, and wLML.

using LML proposed in [2], and the newly proposed weighted
LML cost function. Results for these clustered models are plot-
ted in Figure 1 for LML and Figure 2 for weighted LML. The
proposed weighted LML significantly outperforms LML for all
model sizes as we can see in Figure 1. In average, a 24% relative
improvement over the LML results is observed. Weighted LML
even improves on the models trained from data by 2.5% rela-
tive at 90K and 95K. From 45K–95K, weighted LML is within
8% of the trained models and at 45K, it shows only a 6% rel-
ative degradation compared to the 45K trained model. At 5K,
a model trained from data gives 2.53% WER, weighted LML
3.31% and LML 4.31%. That is a 23% improvement from the
LML result.

Results for both varEM optimization techniques (varEM
and discrete varEM) are also plotted for LML and weighted
LML in Figure 1 and Figure 2 respectively. Initial models were
clustered using LML and weighted LML, then several iterations
of varEM were performed to change model parameters as to
better match the 100K reference model. For LML, from 75K–
95K, both varEM techniques improve on the performance of
the clustered models. In this range, varEM gives a consistent
30% relative gain over LML results, much better than discrete
varEM. From 40K–80K, both techniques cannot improve on the
LML models, with discrete varEM keeping within 9% of the
LML performance, closer than varEM. Over the 5K–35K range,
a clear trend of improvement is observed for both techniques,
reaching its peak at 10K. Indeed, at 10K varEM gives a 2.54%
WER which is a 31% relative gain over LML’s 3.34% WER,
almost reaching the performance of weighted LML with 2.51%
WER. We have observed that, not surprisingly, varEM needs a
lot more iterations to converge than discrete varEM when up-
dating the same CD state using identical initialization. Since
discrete varEM always gives performance closer to its initial
model, we can only conjecture that the constrained nature of its
E–step (discrete φ) may be helping converge to local maxima
closer to the initial model, rather than for the relatively uncon-
strained varEM.

For weighted LML, both varEM techniques remain close to
the initial model results from 45K–95K. From 20K–40K, both
varEM techniques seem to slightly diverge from the weighted
LML results only to converge again in the 5K–15K range where
varEM gives the best results. At 5K, varEM gives a WER of

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Gaussians (K)

W
ER

 (%
)

LML
wLML
wLML + varEM
wLML + discrete varEM
from data

Figure 2: WER as a function of the number of Gaussians for
models trained from data (100K–STC), models clustered using
LML, wLML, wLML with varEM and discrete varEM.

3.23%, which is a 2.48% relative improvement over weighted
LML with 3.31% WER. Overall, weighted LML is a solid and
significant improvement over LML.

8. Conclusion
We have introduced a new greedy clustering algorithm based
on weighted LML, which improves upon the previously pub-
lished methods. We demonstrated the validity of the varEM and
discrete varEM optimization methods on a speech recognition
task. There is still a gap in performance between refactored and
trained models for large size reductions. To reduce this gap may
require stronger methods that globally optimize the number of
components per GMM. However, we show that weighted LML
can reduce model size by 50%, with almost the same recogni-
tion performance as the corresponding model trained from data.
Weighted LML is an order of magnitude faster than training
from data (the run time is hours instead of days), making it a
viable alternative for refactoring models.

9. References
[1] S. Kullback, Information Theory and Statistics. Dover Publica-

tions, Mileona, New York, 1997.
[2] P. L. Dognin, J. R. Hershey, V. Goel, and P. A. Olsen, “Refactor-

ing acoustic models using variational density approximation,” in
ICASSP, April 2009, pp. 4473–4476.

[3] K. Zhang and J. T. Kwok, “Simplifying mixture models through
function approximation,” in NIPS 19. MIT Press, 2007, pp. 1577–
1584.

[4] X.-B. Li, F. K. Soong, T. A. Myrvoll, and R.-H. Wang, “Optimal
clustering and non-uniform allocation of gaussian kernels in scalar
dimension for hmm compression,” in ICASSP, March 2005, pp.
669–672.

[5] R. Bakis, D. Nahamoo, M. A. Picheny, and J. Sedivy, “Hierarchical
labeler in a speech recognition system,” U.S. Patent 6023673.

[6] I. Csiszár, “Why least squares and maximum entropy? an axiomatic
approach to inference for linear inverse problems,” Annals of Statis-
tics, vol. 19, no. 4, pp. 2032–2066, 1991.

[7] L. R. Bahl, P. V. de Souza, P. S. Gopalakrishnan, D. Nahamoo,
and M. A. Picheny, “Robust methods for using context-dependent
features and speech recognition models in a continuous speech rec-
ognizer,” in ICASSP, April 1994, pp. 533–536.

215

