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Abstract
Homomorphic analysis is a well-known method for the sep-

aration of non-linearly combined signals. More particularly,
the use of complex cepstrum for source-tract deconvolution has
been discussed in various articles. However there exists no
study which proposes a glottal flow estimation methodology
based on cepstrum and reports effective results. In this pa-
per, we show that complex cepstrum can be effectively used for
glottal flow estimation by separating the causal and anticausal
components of a windowed speech signal as done by the Ze-
ros of the Z-Transform (ZZT) decomposition. Based on exactly
the same principles presented for ZZT decomposition, window-
ing should be applied such that the windowed speech signals
exhibit mixed-phase characteristics which conform the speech
production model that the anticausal component is mainly due
to the glottal flow open phase. The advantage of the complex
cepstrum-based approach compared to the ZZT decomposition
is its much higher speed.
Index Terms: Speech Analysis, Homomorphic Processing,
Glottal Source Estimation

1. Introduction
Homomorphic systems have been developed in order to sepa-
rate non-linearly combined signals [1]. As a particular exam-
ple, the case where inputs are convolved is especially impor-
tant in speech processing. Separation can then be achieved by a
linear homomorphic filtering in the complex cepstrum domain,
which presents the property to map convolution into addition.
In speech analysis, complex cepstrum is usually employed to
deconvolve the speech signal into a periodic pulse train and the
vocal system impulse response [2], [3]. Its typical applications
concern pitch detection, vocoding, formant tracking, pole-zero
modeling,... but also reach seismic processing or echo detection
[4].

In parallel, it has been shown [5] that speech is a mixed-
phase signal where the maximum-phase contribution corre-
sponds to the glottal open phase while the vocal tract com-
ponent is assumed to be minimum-phase. In [6], we showed
that the Zeros of the Z-transform (ZZT) based technique was
able to achieve such an anticausality-based decomposition. On
the other side, it has been discussed ([1],[2]) that complex cep-
strum can be used for source-tract deconvolution although no
approach could achieve this robustly. In this paper, we em-
phasize the role of windowing on the mixed-phase decomposi-
tion quality and show how an appropriate window can improve
the glottal source estimation. Taking these precautions into ac-
count, the new technique is shown to carry out similar results as
ZZT, while it is much faster.

The paper is structured as follows. Section 2 presents the
theoretical framework of anticausality-based decomposition.
The Complex Cepstrum (CC) based technique is introduced and
similarities with the ZZT-based method are discussed. Both ap-
proaches are viewed as two different ways to reach the same
goal: separating the maximum and minimum-phase contribu-
tions from a signal Z-transform. Section 3 exhibits our results
on synthetic signals. The impact of windowing, which plays a
crucial role on the decomposition quality, is described in detail
in 3.1. Section 3.2 highlights the fact that CC and ZZT-based
techniques have almost exactly the same behaviour while the
first one is much faster. Finally Section 4 confirms the effi-
ciency of our method on real speech signals.

2. Anticausality-based decomposition of
speech

2.1. Complex Cepstrum based decomposition

The complex cepstrum (CC) x̂(n) of a discrete signal x(n) is
defined by the following equations [1]:

X(ω) =

∞∑

n=−∞
x(n)e−jωn (1)

log[X(ω)] = log(|X(ω)|) + j∠X(ω) (2)

x̂(n) =
1

2π

∫ π

−π
log[X(ω)]ejωndω (3)

where Equations 1, 2, 3 are respectively the Discrete-Time
Fourier Transform (DTFT), the complex logarithm and the in-
verse DTFT (IDTFT). Our decomposition arises from the fact
that the complex cepstrum x̂(n) of an anticausal (causal) signal
is zero for all n positive (negative). Retaining only the nega-
tive part of the CC should then estimate the glottal contribution.
An example of separation using the complex cepstrum on a real
speech segment is exhibited in Figure 1.

One difficulty when computing the CC lies in the estima-
tion of ∠X(ω), which requires an efficient phase unwrapping
algorithm. In this work, we computed the FFT on a sufficiently
large number of points (typically 4096) such that:

• the grid on the unit circle is sufficiently fine, which facil-
itates the phase evaluation,

• distortion from aliasing in x̂(n) is minimized.

Besides these phase unwrapping problems, we show in this
paper (Section 3) that windowing plays a crucial role in the
mixed-phase decomposition.
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Figure 1: Anticausality-based decomposition of speech using the complex cepstrum. Top-left: Real speech signal (Fs = 16kHz)
and applied window. Top-right: Corresponding complex cepstrum where the separation of maximum and minimum-phase components
can be linearly achieved. Bottom-left: Maximum (solid) and minimum-phase (dashed) components. Bottom-right: Log-magnitude
spectrum of these components.

2.2. Zeros of the Z-transform based decomposition

For a series ofN samples (x(0), x(1), ...x(N −1)) taken from
a discrete signal x(n), the ZZT representation is defined as
the set of roots (zeros) (Z1, Z2, ...ZN−1) of the corresponding
Z-Transform X(z):

X(z) =

N−1∑

n=0

x(n)z−n = x(0)z−N+1
N−1∏

m=1

(z − Zm) (4)

Decomposition here arises from the fact that the roots of an
anticausal (causal) signal all lie outside (inside) the unit circle.
The ZZT-based technique [6] aims thus at splitting the roots of
X(z) into two subsets ZAC and ZC where the roots have a
modulus greater (respectively lower) than one:

X(z) = x(0)z−N+1
Mo∏

k=1

(z − ZAC,k)
Mi∏

k=1

(z − ZC,k) (5)

2.3. Unification of both approaches

A parallel can be drawn between both previous techniques since
they perform the same operation: separate the minimum and
maximum phase contributions from a discrete signal x(n). If
X(z) is expressed as in Equation 5, it can be shown that [7]:

x̂(n) =

{ ∑Mo
k=1

ZAC,k
n

n
if n < 0∑Mi

k=1

ZC,k
n

n
if n > 0

(6)

which confirms the close link between ZZT and CC-based
decompositions. Furthermore the phase unwrapping problem
can be solved by factorization, as indicated in [8].

3. Tests on synthetic speech
This Section presents decomposition results on synthetic speech
signals for different test conditions. The idea is to cover the di-
versity of configurations one could find in natural speech by
varying all parameters over their whole range. Synthetic speech
is produced according to the source-filter model by passing a
known train of Liljencrants-Fant glottal waves [9] through an

auto-regressive filter extracted by LPC analysis on real sus-
tained vowel uttered by a male speaker. As the mean pitch dur-
ing these utterances was about 100 Hz, it reasonable to consider
that the fundamental frequency should not exceed 60 and 180
Hz in continuous speech. Table 1 summarizes all test condi-
tions.

Pitch 60:20:180 Hz
Open quotient 0.4:0.05:0.9

Asymmetry coefficient 0.6:0.05:0.9
Vowel /a/, /@/, /i/, /y/

Table 1: Table of synthesis parameter variation range.

Decomposition quality is assessed through two objective
measures:

• Spectral distortion : Many frequency-domain measures
for quantifying the distance between two speech frames
x and y arise from the speech coding litterature. Ideally
the subjective ear sensitivity should be formalised by in-
corporating psychoacoustic effects such as masking or
isophone curves. A simple relevant measure is the spec-
tral distortion (SD) defined as:

SD(x, y) =

√∫ π

−π
(20 log10 |

X(ω)

Y (ω)
|)2 dω

2π
(7)

where X(ω) and Y (ω) denote both signals spectra in
normalized angular frequency.

• Glottal formant determination rate : The amplitude
spectrum for a voiced source (such as the LF model) gen-
erally presents a resonance called glottal formant. As
this parameter is an essential feature of the glottal open
phase, an error on its determination after decomposition
should be penalized. For this, we define the glottal for-
mant determination rate as the proportion of frames for
which the relative error on the glottal formant frequency
is lower than 10%.

This formal experimental protocol allows us to reliably as-
sess our techniques and to test their sensivity to different factors
influencing the decomposition.
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Figure 2: Sensitivity of (Left panel:) the spectral distortion and (Right panel:) the glottal formant determination rate to the window
function. Blackman (x) and Hanning (o) windows are indicated.

3.1. The influence of the window

Windowing is known to be a critical issue for obtaining an ac-
curate complex cepstrum [2], [3]. Most approaches discuss the
validity of the convolutional model in order to separate the peri-
odic pulse train and the vocal system response. The goal of this
Section is to give a complete empirical study of the influence of
the window parameters on our particular task: the anticausality-
based decomposition.

3.1.1. The window position

In [2] the need of aligning the window center with the system
response is highlighted. Although we discuss this issue in [10],
analysis in this work is performed on windows centered on the
Glottal Closure Instant (GCI), as this particular event demar-
cates the boundary between the causal and anticausal responses,
and the linear phase contribution is removed.

3.1.2. The window function

To the best of our knowledge, the impact of the window func-
tion on the complex cepstrum was never analyzed. However we
showed in [11] that the window has a considerable effect on the
root location in the Z-plane and that usual windows (such as
Hanning or Hamming) are generally not the best-suited. In this
work, we consider windows ofN points satisfying the form [1]:

w(n) =
α

2
− 1

2
cos(

2πn

N − 1
) +

1− α
2

cos(
4πn

N − 1
) (8)

for which the Hanning and Blackman windows are partic-
ular cases (for α = 1 and α = 0.84 respectively). Figure 2
exhibits the influence of parameter α, regulating the window
function, on the decomposition performance. In both graphs,
an optimum clearly emerges for α = 0.72. This value is used
throughout the rest of the paper. It can be noticed that the
widely-used Hanning window is not appropriated for our ap-
plication.

3.1.3. The window length

In [2] and [3], it is argued that a window whose duration is about
2 to 3 pitch periods gives a good trade-off for being consistent
with the convolutional model. Figure 3 shows the impact of
the window length on the glottal formant determination. The
best decomposition is achieved for two period-long windows.

Besides a slight error on the pitch estimation can be tolerated
since this would not have a dramatic incidence.

Figure 3: Sensitivity of the glottal formant determination rate to
the window length.

3.2. Comparison between CC and ZZT-based decomposi-
tion

As underlined in Section 2.3, CC and ZZT-based techniques
can be viewed as two different means to separate the minimum-
and maximum-phase components from the speech signal. Their
decomposition should then be theoretically strictly equivalent.
We confirm it through our experiments, except for some rare
cases for which decomposition may differ. One possible expla-
nation is the difficulty in reliably unwrapping the phase for these
cases. In the following points, we discuss the factors affecting
the efficiency of these methods, and compare them in terms of
computational load.

3.2.1. The factors influencing the decomposition

Many factors may affect the quality of our decomposition. Intu-
itively, one can think about the interference between minimum
and maximum-phase contributions. The stronger this interfer-
ence, the more difficult the decomposition. Basically, this inter-
ference is conditioned by three parameters:

• the pitch F0, which governs the spacing between two
successive vocal system responses,

• the first formant F1, which influences the minimum-
phase time response,

118



Figure 4: Glottal formant characteristics estimated by both ZZT and CC-based techniques on a real sustained vowel. Left panel:
evolution of the glottal formant frequency, Right panel: evolution of the glottal formant bandwidth.

• and the glottal formant Fg , which controls the
maximum-phase time response.

A strong interference then implies a high pitch, with low
F1 and Fg values. Throughout our experiments we confirmed
the performance degradation with the evolution of these fac-
tors, equally touching CC and ZZT-based techniques. Results
yielded by both methods over the whole test set were sensi-
bly identical. A minor difference was reported in favor of ZZT
probably for the reasons mentioned above.

3.2.2. Computational considerations

Since we are treating speech frames whose length is twice the
pitch period, the ZZT-based technique requires to compute the
roots of generally high-order polynomials (depending on the
sampling rate and on the pitch). Although current polynomial
factoring algorithms are accurate, the computational load re-
mains problematic. On the other hand, the CC-based method
just relies on FFT and IFFT which can be fastly computed. Ta-
ble 2 shows the clear advantage to use the complex cepstrum.

ZZT-based CC-based
decomposition decompostion

60 Hz 1837.1 17.11
180 Hz 184.7 16.49

Table 2: Comparison of the required computation time (in ms,
for our Matlab implementation with Fs = 16kHz) for different
pitch values.

4. Tests on real speech
We validate our method on the same example as in [12]. It con-
sists of a sustained vowel /a/ with a flat pitch and decreasing
open quotient (voluntarily produced by an incresing pressed ef-
fort). Figure 4 compares the glottal formant characteristics (fre-
quency and bandwidth) estimated by both ZZT and CC-based
methods. It can be noticed that here again decompositions give
sensibly similar results.

5. Conclusion
This paper discussed the methodology for applying the complex
cepstrum for mixed-phase decomposition, allowing the estima-
tion of the glottal source. The importance of a suited window-

ing has been highlighted. It has been shown how the applied
window conditions the separation quality. A parallel with the
ZZT-based technique has been drawn since both methods aim
at separating minimum and maximum-phase contributions of
speech. Results we obtained for both methods are sensibly sim-
ilar, while the complex cepstrum-based decomposition is much
faster.
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