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Abstract

We investigated dynamic programming (DP) and state-
model (SM) approaches for estimating gestural scores from
speech acoustics. We performed a word-identification task us-
ing the gestural pattern vector sequences estimated by each ap-
proach. For a set of 75 randomly chosen words, we obtained
the best word-identification accuracy (66.67%) using the DP ap-
proach. This result implies that considerable support for lexical
access during speech perception might be provided by such a
method of recovering gestural information from acoustics.

Index Terms: gestural patterns, acoustic to gesture inversion

1. Introduction
The idea that the perception and production of speech are in-
tricately bound to one another is not new. To be more precise,
the motor theory of speech perception, proposed by Liberman
and his colleagues [1, 2] hypothesizes that the perceptual code
of speech is not acoustic but articulatory: the acoustic signal of
speech only helps the listener’s auditory-nervous system to un-
cover the articulatory gesture performed by the talker. Such a
viewpoint helps to explain that although a speech sound, such
as the phoneme /d/, is always perceived as /d/ no matter how
diverse the phonetic context in which it appears is, its acoustic
form will exhibit large variations as a function of the context.
Although the motor theory has undergone significant evolution
since its inception, its basic premises have remained valid (for
an excellent review, see [3]), even as speech science and tech-
nology evolved rapidly, fueled by the growth of computer tech-
nology. The same is true for the concept of analysis by syn-
thesis, first proposed by Halle and Stevens in 1962 [4]. Con-
temporary cognitive science and neuroscience have validated
the existence of links between sensory and motor mechanisms
active during speech perception [5] as well as neural activity in
pre-motor cortical areas specializing in speech production when
someone listens to speech [6, 7].

The link in speech science and technology between the
acoustic structure of speech perception and the articulatory pat-
terns that gave rise to these acoustics was first explored in the
design of speech synthesizers based on articulatory knowledge.
Significant progress in the development of such articulatory
synthesizers was made at the Bell Laboratories from the 1960s
on [8, 9, 10, 11]. This work successfully employed a map-
ping from measured [12, 13] speech articulator time-functions
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to a readily understandable, and often excellent quality, acous-
tic signal. However, investigators did come to realize that the
problem of acoustic-to-articulatory transform is a difficult one.
The mapping between formant frequencies and vocal tract area
functions is ill-posed, as it is not unique. However as early as in
the 1970s attempts have been made to obtain an inverse trans-
form from speech acoustics to the underlying articulatory ges-
tures using additional constraints: articulatory, dynamic, and
continuity-mapping [14, 15, 16, 17]. Several methods were ex-
plored, such as codebooks pairing speech corpora consisting of
parallel acoustic and articulatory representations [18, 19], neu-
ral networks [20], and HMMs or other stochastic methods [21].

Previous work [18], which we expand here, is based on a
codebook approach that differs from those of other investigators
in several ways. The most important difference is that we adopt
an analysis-by-synthesis procedure by using the Haskins Labo-
ratories task-dynamics (TADA) articulatory synthesizer [22] to
produce the samples in both the training and the test sets. This
synthesizer generates gestural motion patterns in a task space
of eight vocal tract constriction variables (tract variables). In-
tergestural coarticulation is produced as the simple consequence
of temporal overlap among these motion patterns.

2. Problem Definition
Traditional phonology represents speech as a sequential con-
catenation of primitive phonological units, phonemes; each
phoneme has its own acoustic properties in a given context.
On the other hand, articulatory phonology represents speech
as an ensemble of gestures [23, 24]. Gestures are defined as
dynamical control regimes for constriction actions in eight dif-
ferent constriction tract variables consisting of five constric-
tion degree variables (lip aperture (LA), tongue body (TBCD),
tongue tip(TTCD), velum (VEL), and glottis (GLO)) and three
constriction location variables (lip protrusion (LP), tongue
tip (TTCL), tongue body (TBCL)). According to articulatory
phonology, the tract variable time functions, which shape the
acoustics of speech, are regulated by a gestural score, that is
composed of (roughly) step-function-like temporal activation
intervals of tract variable dynamical control regimes, each pa-
rameterized by a constriction target and a stiffness of the acti-
vated gesture. The goal of this paper is to estimate these gestu-
ral scores. For our purposes, the gestural score is divided into
a sequence of 5 ms slices, and for each slice, a gestural pattern
vector [25] is calculated, that encodes the instantaneous gestu-
ral control parameters for the tract variables controlled at that
time slice.
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Let us consider {Ak}Nk=1 to be a sequence of acoustic fea-
ture vectors derived from given speech signal x(n). Let Ak be

the feature vector of kth frame, where the frame size isNw and
frame shiftNsh. Let {Gk}Nk=1 denote the corresponding gestu-
ral pattern vectors. The elements of Gk are the gestural param-
eter values at frame k. We assume that the sequence of gestural
pattern vectors provides a good approximation of the respective
gestural score. Thus the problem is to estimate {Gk}Nk=1 from

given acoustic features {Ak}Nk=1.

3. Proposed Approaches
To estimate {Gk}Nk=1 from independent {Ak}Nk=1, we propose
two approaches: a) dynamic programming similar to that re-
ported in [18] and b) a state-model approach where {Ak}Nk=1

defines the observation sequence and {Gk}Nk=1 defines the cor-
responding state sequence. These two approaches are described
below.

3.1. Dynamic programming (DP) approach

In this approach, we find {Gk}Nk=1, which maximizes the fol-

lowing likelihood, given {Ak}Nk=1, after [18]

argmax

{Gk}N

k=1

NY

j=1

p
`
Gj |Aj

´
p
`
Gj |Gj−1

´
(1)

where p
`
Gj |Gj−1 = g

´
= N

`
g,Λ

´
is the normal probabil-

ity density function (pdf) with mean g and diagonal covariance
matrix Λ. Lammert et al. [18] showed that such criterion is
suitable for deriving solutions to the articulatory inversion prob-

lem. Since p
`
Gj |Aj

´
=

p(Gj ,Aj)
p(Aj)

, the overall likelihood in

two spaces (acoustic and gesture) are considered in the opti-
mization. p

`
Gj |Gj−1

´
is used as additional factor so that the

gestural pattern vector varies smoothly from one frame to the
next. Λ is estimated from the gestural pattern vector sequences
in the training set. The diagonal entries are the variances of the
components in the gestural pattern vectors.
This optimization problem is solved by dynamic program-

ming (DP). Note that each gesture variable can take any real
value. Thus, for the acoustic features at each frame the possible
candidates of gestural pattern vectors provided by the DP algo-
rithm are uncountably infinite. Therefore, we restrict the search
space by finding the gestural pattern vectors from the training
set, whose corresponding acoustic vectors are in the neighbor-
hood of the acoustic vector of the current frame. The best path
among these candidates are obtained to maximize the likelihood
in eqn. (1).

3.2. State Model (SM) approach

Although each component of a gestural pattern vector can take
any real value, we observe that some gestural pattern vectors are
very rare in the dataset. Hence, instead of considering the full
range of possible gestural pattern vectors, we quantize them.
Let all the gestural pattern vectors be clustered into Q clusters
with the mean vectors G1, ..., GQ. The mean of each cluster is
chosen to be the representative pattern vector for all members of
the cluster; the result is a finite set of quantized gestural pattern
vectors. We denote the quantized pattern vector of frame l by
Gq

l ∈
˘
G1, ..., GQ

¯
.

We assume G1, ..., GQ are Q gestural pattern states
and {Ak}Nk=1 are observed acoustic vectors. We consider

speech production to be characterized by a generative model
in which acoustic vectors are generated based on the proba-
bility density function p (Ak|Gq

k) when the state at frame k

is Gq
k ∈

˘
G1, ..., GQ

¯
. The transition probabilities from

one state in frame k to another state in frame k + 1 is given
by p

`
Gq

k+1|Gq
k

´
and, thus, the probability of generating inde-

pendent {Ak}Nk=1 from a state sequence {G
q
k}Nk=1

is given byQN
k=1 p (Ak|Gq

k) p
`
Gq

k|Gq
k−1

´
. We estimate both p (Ak|Gq

k)

and p
`
Gq

k+1|Gq
k

´
from the training data.

Given an observed acoustic sequence
˘
Aj

¯N

j=1
, the goal

is to find the best quantized gestural state sequence that will
maximize a likelihood expressed similarly to eqn (1) but using
quantized gestural pattern vectors as follows:

argmax

{Gq
k}N

k=1

NY

j=1

p
`
Gq

j |Aj

´
p
`
Gq

j |Gq
j−1

´
(2)

Since p (Gq
k|Ak) ∝ p (Ak|Gq

k)P (Gq
k) (by Bayes’ Rule),

eqn (2) can be written as

argmax

{Gk}N

k=1

NY

j=1

p
`
Aj |Gq

j

´
P

`
Gq

j

´
p
`
Gq

j |Gq
j−1

´
(3)

where, P
`
Gq

j

´
is the probability of Gq at the jth frame, which

is also estimated from the training corpus.
The gestural pattern vectors in the training set are used to

obtain G1, ..., GQ by the K-means algorithm. After quantiza-
tion, p

`
Gq

k|Gq
k−1

´
is estimated from the sequence of quantized

gestural pattern vectors. For each quantized gestural pattern, all
corresponding acoustic vectors are used to estimate p (Ak|Gq

k).

Given a test speech utterance, i.e., {Ak}Nk=1, we perform
the best decoding of the state sequence such that the likelihood
in eqn (3) is maximized. This is performed using an approach
similar to viterbi-decoding.

4. DataSet and Experimental Setup
In this paper, we use a speech dataset synthesized by Hask-
ins Laboratories speech production model TADA [22]. TADA
is a MATLAB implementation of the Task Dynamic model
of speech articulator coordination. To synthesize speech us-
ing TADA we used 213 natural and phonetically balanced sen-
tences, drawn from the Harvard IEEE Corpus. To input the
sentences into TADA, we used the programs capability to re-
ceive orthographic input. From within TADA, this orthogra-
phy is then converted into a syllabified phoneme sequence via
a syllabified version of the CMU pronouncing dictionary. The
phonemes are represented, in turn, as sets of tract variable con-
trols (usually 1-3 per phoneme), and the syllable frames are
used to specify a coupling graph [26], from which the gestu-
ral activations (constituting the gestural score) are triggered.
From the gestural score, we calculated a gestural pattern vec-
tor sequence at a 200 Hz frame rate. The gestural pattern vec-
tor in our work is defined (somewhat differently than in [25])
as the constriction target value for each tract variable active at
that frame: TTCD, TTCL, TBCD, TBCL, LA, PRO, VEL or
GLO. When more than one gesture controls a given tract vari-
able at a given frame, the value is the mean of the target values,
weighted by the parameter blending weight specified by TADA.
The gestural score then controls articulator motion, which is
input to a vocal tract model, that also generates acoustic out-
put (using HLsyn [27]). The acoustic output of is transformed
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Figure 1: Illustration of the gestural pattern vector estimates using DP and SM approach. Solid lines are the reference gesture variable
trajectories obtained from TADA and dash-dotted trajectories are their estimates using DP approach (left column) and SM approach
(right column).

into 13 Mel Frequency Cepstral Coefficients (MFCCs) [28] us-
ing a 10ms window size and 5ms window advance rate. Thus,
we obtain 125849 parallel 13-dimensional acoustic vectors and
8-dimensional gestural pattern vectors. Out of these we used
88006 parallel vectors for training (corresponds to 150 sen-
tences) and remaining 37843 vectors for testing (corresponds
to 63 sentences).

Among 88006 gestural pattern vectors in the training set,
there are 1975 unique gestural pattern vectors and 192 vectors
among them cover ∼70% of all gestural pattern vectors. Thus,
for our experiment we choseQ for SM approach to be 150, 180
and 210.

5. Evaluation and Results
Fig. 1 illustrates the estimated gestural pattern vector sequence
obtained using DP and SM approaches. The left column plots
the time trajectory of the original gesture variables (solid line)
and their estimates using DP approach (dash-dotted line). The
right column plots the same but using SM approach. Neither ap-
proach performed uniformly for all eight gestural variables. In
general, the estimated trajectories follow the basic trend of the
reference trajectories for most of the gesture variables. How-
ever, for few variables, the estimated trajectories do not match

to the reference ones. In particular, due to vector quantization,
the estimated GLO using SM approach never matched the refer-
ence GLO trajectory, which was not the case for DP approach.
Because of vector quantization, the quantized vectors are not
necessarily any gestural pattern vectors in the training set and
hence estimated trajectories may not match well to the refer-
ence trajectories in some cases. To analyze the performance of
these two approaches, we derived an evaluation metric over 63
test sentences.

To evaluate the performance of both DP and SM ap-
proaches, we manually picked 75 words randomly from the 63
test sentences and performed a word identification experiment
based on the estimated gestural pattern vectors for these words.

Let Gi denote the reference gestural pattern vector se-

quence for the i-th test word (i=1, ..., 75) and let Ĝi denote
the estimated gestural pattern sequence for the i-th word. For

identifying the i-th word, Ĝi was compared to Gj , j=1, ...,
75, using dynamic time warping (DTW) between the two se-
quences of gestural pattern vectors using Mahalanobis distance
between vectors as distance metric. After obtaining alignment

using DTW, the distance between Ĝi and the reference gestural

pattern vector sequence of the jth word was computed, for all
i, j ∈ {1, ..., 75}. The word for which the reference gesture
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pattern was closest to Ĝi was identified as the i
th word. Table

1 shows the percentage accuracy of this word identification task
for the different estimation approaches, using MFCC to define
the acoustic vectors.

Schemes % Identification Accuracy

DP 66.67%

SM (Q=150) 52.00%

SM (Q=180) 61.33%

SM (Q=210) 60.00%

Table 1: Word identification accuracy for various gesture pat-
tern estimation approaches.

It can be seen that, in general, the performance of SM ap-
proach is worse than that of DP approach. Although gestural
activation variables are roughly quantal in nature (i.e., step func-
tions between zero and one), quantization over the time course
of the entire gestural score does not necessarily maintain the
original quantal nature for each component of the gestural pat-
tern vector sequence. Thus, it appears that the quantization er-
ror can diminish the performance of the SM approach. This
is evidenced by the fact that, due to quantization error being
greater for low Q, the performance of SM drops to 52% for
Q=150. On the other hand, although the DP approach is not
subject to quantization errors, it constrains the estimated se-
quence to be as smooth as possible which belies the underly-
ing quantal nature of the gestural activation variables. In spite
of that DP approach achieves the best performance (66.67%).
This means 50 words out of 75 words were correctly identified.
The best performance among SM approaches is obtained for
Q=180. Among misidentified words, “friends”, “busses” and
“sharp” were wrongly identified as “good”, “child” and “cars”
respectively, for both DP and SM (Q=180) approaches.

6. Conclusions
We presented two approaches for estimating gestural patterns
from speech signals. The greatest accuracy (66.67%) in a word
identification task was obtained using estimated gestural pat-
tern estimated by the DP approach, suggesting that gestural re-
covery from acoustics using this method provides considerable
information for identifying a word from a set of words.
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