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Abstract

In this paper we propose a model-based approach to instanta-
neous pitch estimation in noisy speech, by way of incorporating
pitch smoothness assumptions into the well-known harmonic
model. In this approach, the latent pitch contour is modeled us-
ing a basis of smooth polynomials, and is fit to waveform data
by way of a harmonic model whose partials have time-varying
amplitudes. The resultant nonlinear least squares estimation
task is accomplished through the Gauss-Newton method with a
novel initialization step that serves to greatly increase algorithm
efficiency. We demonstrate the accuracy and robustness of our
method through comparisons to state-of-the art pitch estimation
algorithms using both simulated and real waveform data.

Index Terms: Harmonic model, instantaneous pitch estimation

1. Introduction

The pitch period is a function of the fundamental frequency of
a voiced speech signal, and an important feature in speech anal-
ysis. A variety of pitch estimation algorithms exist in the litera-
ture, classified mainly according to their temporal assumptions
on pitch variation. In the frame-based approach of [1], the pitch
period is assumed constant within each analysis window; this
forms the basis for pitch analysis algorithms in tools such as
Praat [2] and WaveSurfer [3]. However, in reality, pitch cannot
necessarily be assumed constant within each analysis window,
leading to a number of problems. In regions of rapid pitch vari-
ation, for instance, shorter windows should be utilized, other-
wise the resultant estimates are smeared. On the other hand,
longer windows lead to more robust estimation in the presence
of noise. In this paper, we propose a method which is able to
track rapid pitch variation and is robust in low signal-to-noise
environments.

Models of both the speech signal and the pitch process itself
have been put forward in recent work, in order to increase the
robustness and accuracy of pitch estimation. Tabrikian [4] in-
troduced a “Harmonic plus Noise”” model for modeling speech
along with maximum a posteriori probability framework. The
notion of instantaneous pitch, which assumes the process can
vary continuously, has been used in the fine pitch model of
Droppo [5] and the continuous pitch estimator of Resch [6].
Although [5] allows for discontinuous changes in pitch period
from epoch to epoch, while [6] assumes further constraints, both
share the same fundamental idea of the smoothness of the pitch
process; i.e., that pitch periods tend to change in a relatively
controlled manner over time.
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2. The harmonic model of voiced speech
2.1. Harmonic model

We may model a segment of windowed voiced speech using the
time-varying amplitude harmonic model [7]:

K

s(t) = Z{ak (t) sin(k(t)) + bi(t) cos(kg(t))}, (1)

k=1

where K is the number of harmonics, ax(t), bx(t) represent
amplitudes of harmonic partials, and ¢(t) is the instantaneous
phase, i.e., ¢(t) = fot w(7)dT where w(t) is the instantaneous
frequency of the windowed signal. With discrete time index
t € {t1,t2,...,tn}, we obtain discretized samples in the form
of vector, i.e., s = [s(t1),...,s(tn)]” denotes a windowed
speech segment of length N, with ¢ on the order of 100 ms.

If the amplitude terms of (1) are assumed to be slowly time
varying, we may represent them as ay(t) = 25:1 g, Yi(t)
and bi(t) = Si_ Briti(t), where ¥(t),i € {1,....I}
form a set of smooth basis functions; e.g., Hanning win-
dow function translated in time [7]. Denoting o« =
[a1,1,...,aK’]]T, ,6 = [51’1,...,,81(7]}T, and (f) =
[¢(t1),...,0(tn)]T, s can be expressed in the form of a gen-
eralized linear model as follows:

s = D(¢) [aTﬂT]T, 2)

where elements of D (¢) are constructed to satisfy the equation,

s(t) = ZZ [0:(t) sin(ke(t)) i(t) cos(ko(t))] {g:}

k=1 i=1

for t € {t1,...,tn}. We then adapt a standard addi-
tive noise model whereupon the vector of observations y =
[y(t1),...,y(tn)]" is assumed to be corrupted by zero-mean
white Gaussian noise with variance o2; that is y(t,) = s(t.) +
€(tn) where e(t,) ~ N(0,02).

2.2. Incorporating pitch dynamics

In frame-based pitch estimators, the instantaneous frequency
term w(t) is assumed to be wot within the analysis window of
interest, where wy is constant. In contrast, we adopt a model that
exploits the notion of smoothness of the instantaneous pitch pe-
riod; the pitch trajectory is modeled as a piecewise polynomial
function of a low degree. This leads to an expansion of each
piece of the pitch trajectory in a low-order polynomial basis.
To introduce this smooth pitch model, define L as the length
of each piece, where it is assumed without loss of general-
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Figure 1: Diagram outlining the proposed model

ity that L divides N. Then, P = % will be the number
of pieces in one window. Let M denote the highest order of
polynomial basis function employed, with the mth basis func-
tion given by 7, (t), which is differentiable. 7., (t) is then
discretized at t € {t1,...,tr} and we define the mth ba-
sis vector as N = [ (t1), ..., Mm(tL)]". Also, let 0. p
be the expansion coefficient corresponding to the mth polyno-
mial basis function of the pth piece for m € {0,..., M} and
p € {1,..., P}. Then define 0 to be a collection of all . .; i.e.,
0= [90,1, ey 6'1\4,17 . ,9()’137 ey 9M,p]T.

See Figure 1 for further explanation. The top figure shows
the instantaneous pitch frequency while the bottom figure shows
the corresponding speech signal. As shown in the figure, a win-
dowed speech segment of length /N has a corresponding instan-
taneous pitch trajectory of length N. This pitch trajectory con-
sists of P pieces (here P = 4) of length L, each being smoothly
connected to its neighbors according to the smoothness assump-
tion to be discussed in the following section. Each piece is
expanded in the polynomial basis of length L with expansion
coefficients 0, p.

Instantaneous pitch w = [w(t1), ..., w(tn)]” is then

w = 00,
Mmo...mm] 0 ... 0

3)

0

0

0 0 [770...7’]»[]

Here €2 is a block-diagonal matrix of size N x (M + 1) P,
and 0 is a vector of length (M + 1)P representing the corre-
sponding coefficients of the polynomial basis. This leads us to
write s in (2) in terms of «, 3, and 0 as

T

s =s(a,8,0)=D(0) [a"B"] ",

where (o, 3,0) are the unknown parameters that describe a
windowed speech segment, with K, M, I, and L known.

“

2.3. Enforcing smoothness of pitch

In order to exploit our assumption of pitch smoothness, we con-
strain the instantaneous frequency to be continuously differen-
tiable at the boundaries between pieces as well as the boundaries
between windows. These two types of continuity are explained
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in Figure 1 as well. The boundaries between pieces and win-
dows are represented by blue circles and red squares, respec-
tively. At a blue circle, the expansion coefficients of the two
pieces adjacent to the boundary are constrained so that the tra-
jectory of the two pieces can be connected smoothly. At a red
square, the expansion coefficients of the first piece of the current
window are constrained to equal the coefficients that expand the
last piece of the previous window. In order to assure the con-
tinuity between two pieces, we constrain the instantaneous fre-
quency to be continuously J-times differentiable at the bound-
aries of the pieces; e.g., w') (t1) = w9 (tr11) where (-))
denotes the jth derivative with respect to t. The continuity con-
straints, with discretized . (t) attimet € {t1,...,tr} are:

15 (tL)00p + - .+ 15 (t1)01.p
=8 (t1)00,pr1 + ...+
forj €{0,...,J}andp € {1,...,P —1}.
Similarly, the continuity between two windows is assured
by constraining the instantaneous frequency to be continuously

(t1)0n pt1

J-times differentiable at the boundaries, that is, w,(fr) (tn) =
wg)(tl) where wy, and w,, denote the instantaneous fre-
quency of the previous window and the current window, respec-
tively. Let 0o 0, ...,0r,0 be a set of known coefficients from

the previous window. Similarly then, for j € {0,..., J},
1§ (tL)0o0 + -+ (t2)0ar0
= 77((,j>(t1)90,1 +...+ 77%) (t1)01,1.

We then collect the two types of continuity constraints in
matrix form as a function of 0, as follows:

RO =c, )

where R and c consist of 7., (), 7 (), - - -, 5,1])() form €
{0,..., M} attime ¢t; and ¢z, and 6o,0, . . . , Oar,0 from the pre-
vious analysis window.

3. Parameter estimation

In our speech model (2) with the pitch model described in (3),
the unknown parameters are o, 3, and 6. We would like to es-
timate the unknown parameters by minimizing a cost function
subject to (5). Writing the cost function £ with Lagrange multi-
pliers A and the optimized parameters, x = [aTBTGT] T, we
have

(6)
N

L) = 2

= 5lly—s@)| + X" (Rz — ")

& = arg min L(x),
T

where R and ¢* are augmented R and ¢ with zeros such that
R*xz = RO and RO = cifand only if R*x = c".

3.1. Gauss-Newton method

Realizing that (7) is a nonlinear least squares estimate with con-
straints, we employ the Gauss-Newton method in order to ob-
tain the global minimum of (6) iteratively. Then the procedure
of updating the parameters from &, to 441, the estimates at
iteration ¢ and g + 1, respectively, is expressed as

- . 1 * *
g1 = argmin{z [y — sz (x,z)|” + Ay (R'z — <)},
x



where A, is the Lagrange multiplier at iteration ¢, and
sr(x,x4) is the linear approximation of (1) around x4:

sp(®,@q) = s(zq) + Jy(T — x4)

where J, = J(x4) is the Jacobian matrix of (2) with respect
to . Note that £,41 and Ay+1 can be obtained by solving the
Karush-Kuhn-Tucker matrix [8]:

T:| |:3A3q+1} — |:Jg(y = s(mq) — Jqxq)

JlJ, R
Ag+1 )

R 0 c

3.2. Initial estimator

To initialize our iterative estimator, we require an initial estima-
tor for the instantaneous frequency which should be sufficiently
accurate to ensure that the iteration converges to the global min-
imum as expected, regardless of the presence of many local
minima. Stoica [9] shows that the standard deviation of an ini-
tial frequency estimate should be on the order of 1/N in order
that the Gauss-Newton method is able to find the global mini-
mum, by showing the width of the valley of the global minimum
is in the range [27/N, 47 /N], when N is the number of sam-
ples. Quinn [10] proposed a fast estimator of multi-sinusoidal
components in time series and showed that the standard devia-
tion of the estimator of each sinusoidal component is on the or-
der of ﬁ, which satisfies the condition for the Gauss-Newton
method to work.

In [10], the signal is modeled such that it has a known
number of different frequency components, wy,’s, which are as-
sumed to be constant within the analysis window. Instead, we
take harmonic structure into account by letting wr = wo - k,
where wy is the constant fundamental frequency (i.e. the pitch
period). When time-invariant amplitudes and pitch period are
assumed in (1), it can be verified that

st) [ [(1 = 2D cos(wo - k) + D*) =0
k=1

where D denotes the unit delay operator. This is equivalent to
saying that (1 — 2D cos(wo - k) + D?) annihilates each kth har-
monic partial in (1). Applying the annihilating filter to the noisy
data y(t,) = s(tn) + €(tn), we obtain an ARMA (2K, 2K)
model

2K 2K
D oryltn-i) =Y prelta-r), (8)
k=1 k=1

where the parameters {y, } are determined by the polynomial

2K

k j—

Pz =
k=0

Thus, with the special ARMA model of (8), whose AR and MA
parts are identical, the problem of estimating the fundamental
frequency reduces to that of estimating the ¢;’s. Using each
side of (8), we can adopt the iterative least squares approach
of [10] in order to obtain an initial frequency estimate 6o.

K

H(l — 2z cos(wo - k) + 2°).

k=1

Algorithm 1 summarizes our pitch estimation algorithm for
voiced speech signals whose length is greater than IV, in which
case more than one analysis window is needed. The algorithm
will return a set of final estimates, € ;’s, whose number corre-
sponds to the number of analysis windows needed for the entire
signal.
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Algorithm 1 Pitch Estimation Per Windowed Segment

1. Initialize 6 by the modified Quinn’s algorithm introduced in
Section 3.2. Then obtain &g and Bp from (4) by substituting
09, and solve for & and Bo.

2. Set ¢ = 1 and start the Gauss-Newton iteration described in
Section 3.1 with the initial estimate &g = [dgﬁg ég 7. Up-
date ¢ <~ ¢ + 1 and iterate until convergence. If converged,
stop the iteration and set the final estimate, i.e., £y = &4.

4. Results

‘We now present experimental results demonstrating the robust-
ness and accuracy of our method relative to standard algo-
rithms such as RAPT [3] and the maximum a posteriori estima-
tor (MAP) of [4]. The RAPT algorithm, used in popular pitch
analysis tools such as WaveSurfer, decides pitch candidates and
their cost by searching for local maxima in the autocorrela-
tion function of the windowed speech signal, and then using
a dynamic programming technique, along with voiced/unvoiced
transition costs to account for halving and doubling issues when
estimating pitch period. To ensure the most useful comparison,
we removed this unvoiced/voiced selection feature.

The MAP approach of [4] assumes a harmonic model for
voiced speech so that each windowed signal is expressed with
a generalized linear model whose basis functions depend on
the fundamental frequency and the number of harmonic par-
tials. The pitch track itself is determined by the MAP estimate
of pitch track parameters over several windows. The estimator
is implemented using a recursive dynamic programming tech-
nique, that chooses a predefined frequency grid as its states,
which affects the resolution of estimated pitch period.

Experiments were performed using both simulated and real
waveform test data, with the former generated by a cascade of
second-order digital resonators. The model parameters used
were (K, I, M, %) = (5,8,4,200 ms) or (5,16, 4,400 ms)
depending on the sampling frequency, fs. Figure 2 shows the
estimated pitch period from RAPT, MAP, and our voiced speech
model (VSM) with the Gauss-Newton method, plotted with the
true instantaneous pitch period used to generate the simulated
signal. The dotted line represents linear interpolations of pitch
period from a frame-based estimator. MAP performs better at
low SNR’s than high SNR’s as mentioned in [4], where RAPT
fails to estimate desired pitch period by choosing subharmon-
ics. Our scheme shows consistent performance in both the high
and low SNR regimes.

The performance of each estimator in terms of mean-
squared error is reported in Table 1. Gross error (GE), which
is defined as occurring when the estimate differs from the true
value by more than 50 Hz, is shown as well. Root mean-square
error (RMSE) is calculated using only those samples which do
not contribute to gross errors. The accuracy and robustness of
our pitch estimation scheme can be observed by noting that cor-
responding RMSE values are similar regardless of noise level,
and on average are lower than those of RAPT and MAP. Al-
though MAP exhibits its robust performance in reducing GE,
the algorithm does not improve its RMSE in that the accuracy
of the estimator depends on the frequency resolution of the grid
used to optimize its parameters through dynamic programming.

Results from experiments with rapid pitch variation are
shown in Figure 3; RMSE is reported in Table 2. For the ex-
periments, parameters (K, I, M, }V—S) = (5,8,5,100 ms) were
used. It is clear that MAP performs better in terms of RMSE,
whereas our scheme shows better performance in terms of GE.
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Figure 2: Slowly-varying pitch estimation results from simulated data,
corrupted with noise to yield 15 dB (top) and 0 dB (bottom)

Table 1: Root mean-squared error and percentage of gross errors in
estimated pitch, shown for simulated data with slow pitch variation

RMSE (Hz) (GE (%))
SNR (dB) VSM [ RAPT [ MAP
15 8.74 (1.0 936(4.1) | 14.19(8.8)
10 7.65 (0.0) 7.93(2.2) 12.87 (5.0)
5 6.64 (0.0) 8.78 (3.0) 12.08 (5.0)
0 8.77 (3.18) 14.02 (20.9) 11.73 (5.0)

Both our scheme and MAP succeed in estimating the rapid vari-
ation of pitch period, while RAPT fails in this case.

Figure 4 shows the estimated pitch period from a real
waveform—a male-spoken utterance, “Why were you away a
year Roy?”. In the performance of MAP, the same tendency
mentioned above is evident; it is the most robust, but least ac-
curate estimator in terms of both GE and RMSE in high SNR
situations. RAPT fails by choosing subharmonic and harmonic
partials instead of the true pitch period. VSM computes esti-
mates consistently across noise levels, failing only at the low-
amplitude utterance end in low SNR.

To achieve analysis of a 1-second signal sampled at a rate of
16 kHz and degraded to 15 dB SNR, Matlab implementations of
our proposed VSM estimator took 70 seconds while MAP and
RAPT took 572 seconds and less than 1 second, respectively.
For the 0 dB SNR case, VSM required 82 seconds.
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