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Abstract
We present noise robust automatic speech recognition (ASR)
using sparseness-based underdetermined blind source separa-
tion (BSS) technique. As a representative underdetermined BSS
method, we utilized time-frequency masking in this paper. Al-
though time-frequency masking is able to separate target speech
from interferences effectively, one should consider two prob-
lems. One is that masking does not work well in noisy or re-
verberant environment. Another is that masking itself might
cause some distortion of the target speech. For the former,
we apply our time-frequency masking method [7] which can
separate the target signal robustly even in noisy and reverber-
ant environment. Next, investigating the distortion caused by
time-frequency masking, we reveal following facts through ex-
periments: 1) soft mask is better than binary mask in terms
of recognition performance and 2) cepstral mean normalization
(CMN) reduces the distortion, especially for that caused by soft
mask. At the end, we evaluate the recognition performance of
our method in noisy and reverberant real environment.
Index Terms: time-frequency mask, speech sparseness, blind
source separation, stereo-input, robust ASR

1. Introduction
Noise robustness is a very significant aspect of automatic speech
recognition (ASR) because its performance severely degrades
due to the noise which unavoidably exists in our living space.
Several simple and effective techniques to suppress station-
ary noise, e.g. spectral subtraction (SS) for additivity noise
[1, 2] and cepstral mean normalization (CMN) for channel
distortion[3], have been developped so far. Recently, many
speech enhancement methods using microphone array have
been proposed as the front-end to refine the ASR robustness
for nonstationary noise [4, 5]. Especially stereo-input ASR be-
comes a promissing approach since existing devices, such as
normal PC and IC recorder, have a two-channel input. There-
fore, this paper focuses on development of noise robust ASR
techniques by using two-channel input devices.

In a real environment, we often hear interferences with tar-
get speech. And locations of the target and interferences are
usually not known. In addition, the number of sound sources
might be greater than that of microphones in the scenario of
two-channel devices. Therefore, we should deal with a under-
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determined blind source separation (BSS) problem. BSS is de-
fined as a problem to separate multiple source signals from mix-
tures without any prior information about mixing process. One
can separate sources using estimated inverse of the mixing ma-
trix if the number of sources is equal to or less than that of mix-
tures. However, in the case where sources outnumber mixtures,
i.e., underdetermined case, one can not separate them even if
appropriate mixing matrices are estimated. In that sense, under-
determined BSS is a hard problem but matches our scenario.

Time-frequency masking based on speech sparseness is an
effective approach for underdetermined BSS. Here sparseness
means a property of speech that its energy is concentrated in
a small area of time-frequency plain. Most of masking meth-
ods assume that individual source does not overlap in the time-
frequency domain and obtain the target signal by multiplying an
appropriate mask by the observation. Time-frequency mask can
be classified into two types: 1) binary mask which has a value
0 or 1 and 2) soft mask which has a continuous value [0, 1] at
each time-frequency bin respectively. The cue to design masks
is the time delay between two-channel observed signals. How-
ever, it is disturbed by background noise and reverberation be-
cause they are not sparse and comes from various directions.
Additionaly, time-frequency masking itself might cause some
distortion to the target speech signal from the viewpoint of the
ASR.

Although it is well known that time-frequency masking
causes distortion called musical noise, we will show it is very
effective to suppress interference as the front-end of ASR sys-
tem in this paper. We have developed a time-frequency mask-
ing method based on maximum likelihood estimation and it has
good separation performance in terms of SNR. We will show
that our soft masking method is not only able to separate tar-
get signal robustly but also performs less distortion for ASR
system than binary masking method. Moreover, the remained
distortion can be further reduced by CMN and consequently,
recognition performance improves considerably. To show the
effectiveness of our method, we performed detail investigation
through connected digit recognition tasks in reverberant situa-
tion in both of simulation and real environments. It contains
comparison between conventional binary, our binary and soft
masking separation and investigation of the effect of CMN.
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2. Sparseness-based time-frequency
masking in a reverberant environment

2.1. Time-frequency mask estimation by EM algorithm
In this section, we introduce our time-frequency masking
method [7] briefly. We assume that target speech and interfer-
ences are sparse in the time-frequency domain. Here sparsity
means that the energy of signal is distributed in a small area in
that domain. For example, speech is sparse because of its spe-
cific structure along temporal and frequency axes. Hence, one
can assume that each signal does not overlap and only a sin-
gle source is active at each time-frequency bin. Assuming the
two microphones have the same sensitivity and the difference
of source position causes only the time difference of arrival, the
two-channel observation M (τ, ω) = (ML(τ, ω),MR(τ, ω))

T

can be written by

M (τ, ω) = Sk(τ, ω)bk(ω) +N (τ, ω), (1)

where bk = (1, exp(jωδk)) is the transfer function for the
active source Sk(τ, ω) to arrive at microphones directly as a
plane wave and N (τ, ω) = (NL(τ, ω), NR(τ, ω)) is the noise
component which contains reverberation and background noise.
The subscript k represents the index of active source at (τ, ω).
For simplisity, we will omit (τ, ω) and denote just Sk, M , N
and so on if there is no ambiguity. Note that we can easily ex-
tend the model to one with the attenuation of spherical sound
wave.

Our method estimates time-frequency masks based on max-
imum likelihood. Modeling that N follows the Gaussian distri-
bution, the likelihood that kth source is active at (τ, ω) can be
written by

p(M |δk, σ2, Sk) (2)

=
1

2π|V |1/2 exp

 
− 1

2
(M − Skbk)

HV −1(M − Skbk)

!
,

where H means Hermitian transposition, σ2 is the noise power
and V represents the noise covariance matrix which we applied
diffuse sound field model:

V = E[NNH ] = σ2

„
1 sinc(ωD/c)

sinc(ωD/c) 1

«
, (3)

where D is the distance between microphones and c represents
sound velocity.

Our problem is to estimate which source is active at each
(τ, ω) through maximizing log likelihood defined on the whole
time-frequency plain:

LL
`
M | δ1, · · · , δK , σ2, S1, · · · , SK

´
, (4)

where K means the number of sources. In other words, pa-
rameters we have to estimate are not only δk, σ

2, Sk (k =
1, · · · ,K), but also the index k. This is a typical missing data
problem which can be solved by the EM algorithm.

Applying the EM algorithm, maximum likelihood param-
eters can be estimated by iteration of calculating so-called Q
function (E step) and maximizing Q function (M step). Update
rules are derived as below.
E step:

mτ,ω,k ← rk p(M |δk, σ2, Sk)P
k′rk′ p(M |δk′ , σ2, Sk′)

(5)

Q(δk, σ
2, Sk) =

X
τ,ω,k

mτ,ω,k log p(M |δk, σ2, Sk),(6)

where rk means the a priori probability that kth source is active
and is subject to

P
k rk = 1.

M step:

rk ←
P

τ,ω mτ,ω,kP
τ,ω,k′ mτ,ω,k′

, (7)

Sk ← bHk V −1M

bHk V −1bk
, (8)

σ2 ← 1

2C

X
τ,ω,k

mτ,ω,k

1− sinc2(ωD/c)

×
 
MHV −1M − bHk V −1M

bHk V −1bk

!
(9)

δk ← argmax
δk

Q(δk, σ
2, Sk), (10)

where C represents the number of all time-frequency bins.
Since the update rule of δk cannot be derived analiticaly and
it is within a range [−D/c,D/c], we updated δk by discrete
scannning of maximum of Q function. The iteration is per-
formed until the increment of log likelihood shown in Eq. (4)
becomes smaller than a certain threshold.

2.2. Binary and soft masking
We can design masks in two ways, i.e., binary and soft masks.
Although both methods have been proposed in BSS context,
comparison of them in terms of speech recognition have rarely
been performed. Generally, binary mask, which is also called
as hard mask, has a value 1 at time-frequency bin where the
target speech is active, and has 0 in other area. It just switches
passing and cutting all energy at each bin. And soft mask, or
ratio mask, has a continuous value within the range [0, 1] at
each bin. It is known that soft masking shows best performance
if it has a value defined as a ratio between power of the target
source and noise [9]. We defined two types of masking based
on our algorithm described in the previous section as below:
Binary masking:

Ŝk(τ, ω) =

8<
:

bHk V −1M

bHk V −1bk
(mτ,ω,k > mτ,ω,k′)

0 (otherwise)
. (11)

Soft masking:

E[Sk] =
X
k′

mτ,ω,kEk′ [Sk]

= mτ,ω,kEk[Sk] +
X
k′ �=k

mτ,ω,k′Ek′ [Sk]

= mτ,ω,k
bHk V −1M

bHk V −1bk
. (12)

Binary mask has the value bHk V −1/bHk V −1bk at (τ, ω) if the
kth target signal has the largest likelihood. Otherwise it has
zero. On the other hand, soft mask has a continuous value
between zero and bHk V −1/bHk V −1bk depending on mτ,ω,k

which corresponds to the probability that kth signal is active.
Also, the soft-masked signal can be derived as the expectation
of Sk.

3. Recognition experiment
3.1. Experiment objective and condition
We have performed two experiments. First, we compared
recognition performances between binary mask and soft mask.
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Table 1: Sounds used in the experiments.
S1 S2 S3

N1 target speech baby crying cleaner
N2 target speech reading voice impact noise

Table 2: experiment condition
t-f masking speech recognition

sampline frequency 16 kHz
pre-emphasis 1− 0.97z−1

frame size 64 ms 25 ms
shift 32 ms 10 ms

window function Hamming window

And secondly we have investigated recognition performance of
our method in both noisy and reverberant environment of both
simulation and real situation.

Our recognition task was Japanese connected digit recog-
nition which conforms to CENSREC-4, the reverberant speech
database [10]. The target speech for evaluation was randomly
selected from clean speech of CENSREC-4 which contains
6,556 words uttered by 52 people. Two sets of interference
noises were selected from a noise database SMILE2004 [11],
as shown in Table. 1. Impact noise was a interval randomly
picked up from a long signal which we made by cutting out 5
sec from “claps”, “auto door”, “printing”, “dragging a chair”
and “wind bell” and connecting them with 0.5 sec silence. In
the simulation experiment, devices were aligned as shown in
Fig. 1(a) and reverberation was simulated by the mirror method
in three cases where the reverberation time were 0ms, 270ms
and 468ms, respectively. We have also performed an experi-
ment in a real environment with the same condition. Signals
observed in this real room was contaminated by interferences
and reverberations. The noise level was −3 to −7 dB in terms
of SNR against original clean target speech. The target speech
and two interferences were aligned as Fig. 1(b). We recorded
their mixture with a commercially available IC recorder. The
room was a normal office room, which has no noise insulation
device installed.

Experimental conditions of masking and recognition are
shown in Table. 2. We first obtained the time-frequency rep-
resentation of signals and performed the masking. Next, we
resynthesized separated signals and recognized them. As a typ-
ical conventional method, we also obtained speech signals sep-
arated by a binary masking method called DUET [6]. Extracted
features were 38 dimension which includes MFCC (12 dimen-
sion), ΔMFCC, ΔΔMFCC, Δlog power and ΔΔlog power.
In addition, we have also investigated the effect of CMN [3].
The cepstral mean is estimated by computing the average of
each cepstral parameter across each masked speech.

We used HTK ver 3.4 for training and recognition. The
acoustic model was trained with clean 8,440 speeches of
CENSREC-4 uttered by 55 people. It showed 99.3% of word
accuracy (WA) for clean original speech.

3.2. Preliminary experiment to evaluate the separation
Before the recognition experiments, we confirmed separation
performance of our method in terms of SNR by using simulation
data. Table. 3 shows averaged SNRs of all noise set and rever-
beration conditions. We can see that binary mask and soft mask
based on our algorithm show almost the same performance and
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(b) Real room. Height of microphones and sources are 0.9 m.

Figure 1: The alingment of three sources (S1, S2, and S3) and
two microphones (ML,MR). The height of room is both 3 m.

Table 3: Comparison of separation performance among three
two-channel BSS methods.

SNR[dB] separated signal improvement from mixture
DUET 5.87 11.34

Binary mask 8.13 13.60
Soft mask 8.29 13.76

they are better than that of DUET. Our algorithm is robust at
least in terms of the SNR measure compared to DUET.

3.3. Comparison of results between binary and soft mask
In this section, we have compared distortions caused by binary
and soft masks. Actually, separated signal through masking has
various type of distortions such as one due to interferences, re-
verberation and mask itself. To investigate the effect of each
mask itself, we multiplied masks by clean speeches which is
estimated from noisy mixtures of simulation data. Table. 4
shows WAs which were calculated by averaging scores of all
environments. While we can see that both of binary and soft
masks caused distortion and degraded speech recognition rates,
the degradation of soft mask was less than that of binary mask.
And we can also see that CMN reduced the distortion greatly,
especially in the soft mask case.

This results shows that soft mask is favorable as a front-end
of speech recognition and CMN reduces the distortion caused
by soft mask very well. In other words, the distortion caused
by soft mask can be approximated by stationary multiplicative
noise in the mel log spectrum domain.

3.4. Recognition result of simulation
We performed speech recognition experiments by using no
mask (recognizing original mixture), DUET, binary mask and
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Table 5: Recognition performance (WA(%)) in a simulation environment. BMask
means binary mask and SMask means soft mask

0ms 270ms 468ms
method N1 N2 N1 N2 N1 N2 Ave.
NoMask 19.9 12.2 11.6 9.1 10.3 8.2 11.9
NoMask+CMN 45.1 34.5 26.3 25.0 18.7 17.6 27.9
DUET 23.5 27.7 19.9 14.4 12.9 11.2 18.2
DUET+CMN 63.7 70.3 57.9 46.3 30.7 27.0 42.3
BMask 23.8 34.5 14.4 19.2 11.5 13.0 19.4
BMask+CMN 62.2 85.6 37.4 56.9 24.1 31.6 49.6
SMask 39.6 40.8 32.1 29.4 23.7 21.8 31.3
SMask+CMN 93.2 95.7 89.9 88.6 74.7 71.7 85.6

Table 6: Recognition performance (WA(%))
in a real environment.

N1 N2 Ave.
NoMask 13.7 5.9 9.8
NoMask+CMN 37.9 13.4 25.7
DUET 13.1 11.6 12.4
DUET+CMN 33.1 32.4 32.8
BMask 7.2 10.3 8.8
BMask+CMN 31.6 46.8 39.2
SMask 19.2 16.4 17.8
SMask+CMN 64.0 59.9 62.0

Table 4: Comparison of speech recognition performance
(WA(%)) between two time-frequency masking methods.

method WA (%)
Binary mask 28.0
Binary mask+CMN 75.9
Soft mask 41.0
Soft mask+CMN 96.9

soft mask in a simulated reverberant environment. The results
are shown in Table. 5. Our method, or soft mask with CMN,
showed the best performance in all situation. On an average,
our method achieved WA of 85.8%, which was a considerable
improvement compared to 42.3% of DUET with CMN case
and 49.6% of binary mask with CMN case. All masking re-
sults without CMN were not much different in terms of WA
while they showed different performances in terms of SNR in
Table. 3. Although soft mask and binary mask outperformed
DUET in terms of SNR, only soft mask with CMN outperforms
greatly in terms of WA. From this result, we can see that CMN
also reduced the distortion of residual interferences which sep-
arated signal by soft masking contains. We can consider this
is because separated signals by binary mask were too rough to
preserve the envelope of power spectrum. While soft mask also
caused some distortion, its error was less than that of binary
mask because it has a continuous value at each time-frequency
bin and keeps speech envelope flexibly.

3.5. Recognition result of real situation
We also performed recognition experiment in a real environ-
ment to investigate the performance of our method. The result
is shown in Table. 6. Similarly to the simulation case, soft mask
with CMN outperforms other methods greatly. We can see that
separation by masks failed from the result of all masks compar-
ing the case of simulation. Background noise had large power,
which is the difference from the simulation, degraded mask sep-
aration performance. Nevertheless, we can also see that CMN
reduces the distortion and make a good performance of WA. On
an average, soft mask with CMN achieved WA of 62.0%, which
improved from 32.8% of DUET with CMN case and 39.2% of
binary mask with CMN case. This result shows that our method
works well as a front-end of ASR even in a real environment.

4. Conclusion
In this paper, we presented a noise-robust stereo-input ASR sys-
tem using sparseness-based BSS technique in a reverberant en-
vironment. We applied our noise-robust time-frequency mask-
ing method as the front-end of ASR system, then we showed

that soft mask is better than binary mask in terms of recognition
rate. The reason of this is not clear yet and we will perform a
detailed analysis in the future work. Next, we revealed the fact
that CMN reduces the distortion caused by masks, especially
for that caused by soft mask greatly. At the end, we evaluate
the recognition performance of our method in noisy and rever-
berant real environment. The experiment result showed that our
soft masking method followed by CMN has a good recognition
performance.
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