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Abstract

Adaptive training is a widely used technique for building speech
recognition systems on non-homogeneous training data. Re-
cently there has been interest in applying these approaches for
situations where there is significant levels of background noise.
This work extends the most popular form of linear transform for
adaptive training, constrained MLLR, to reflect additional un-
certainty from noise corrupted observations. This new form of
transform, Noisy CMLLR, uses a modified version of genera-
tive model between clean speech and noisy observation, similar
to factor analysis. Adaptive training using NCMLLR with both
maximum likelihood and discriminative criteria are described.
Experiments are conducted on noise-corrupted Resource Man-
agement and in-car recorded data. In preliminary experiments
this new form achieves improvements in recognition perfor-
mance over the standard approach in low signal-to-noise ratio
conditions.
Index Terms: speech recognition, speaker adaptation, noise ro-
bustness

1. Introduction
Current large vocabulary speech recognition systems are nor-
mally constructed on large amounts of non-homogeneous train-
ing data from multiple speakers with different background noise
and channel conditions. One of the techniques to build a speech
recognition system on this non-homogeneous data is to use adap-
tive training [1, 2] with, for example, noise and speaker specific
linear transforms. These transforms should compensate for the
noise, allowing a “clean” acoustic model to be trained on noise
corrupted data. These “clean” models can then be adapted to a
particular test condition. This yields a pure canonical model of
speech compared to multi-style training where the models incor-
porate all the variability of the acoustic data. Adaptive training
is usually based on linear transforms, in particular constrained
maximum likelihood linear regression (CMLLR) [2], as mini-
mal changes to the standard code are required for estimating the
canonical model. However, these forms of adaptive training do
not deal specifically with data with high levels of background
noise. For low SNR conditions the estimates of the clean may be
highly noisy and should not be treated with the same confidence
as high SNR data.

Noise adaptive training schemes, such as [3], make use of
feature-enhancement approaches to handle varying noise con-
ditions in the training data. In the same fashion as CMLLR,
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these techniques do not alter the level of confidence in the es-
timate of the clean speech to reflect the noise conditions, pos-
sibly limiting performance when trying to deal with low-SNR
data. To overcome the limitation of the feature-enhancement
based approaches, model-based adaptive training schemes have
been proposed for data with high levels of background noise us-
ing joint uncertainty decoding (JUD) [4] or vector Taylor series
(VTS) [5]. Both schemes are closely related to one another as
when the number of regression classes used with JUD is equal
to the number of components VTS and JUD become equiva-
lent to one another. However these adaptive training schemes
differ from one another in how the canonical model is trained.
In [4] a second-order gradient descent-based schemes was de-
scribed. Alternatively an expectation-maximisation (EM) ap-
proach is used in [5].

In this paper, a new approach for adaptive training on noise-
corrupted training data is presented. First, a modified version
of generative model relating the “clean” speech and the obser-
vation is proposed. This allows a noise term to be included.
This generative model can be expressed as a linear transform of
the observed features and a bias on the variance (thus it may be
viewed as combining CMLLR with the variance bias described
in [6]) and will be referred to as noisy CMLLR (NCMLLR).
Second, EM-based canonical model estimation formulae are de-
rived using NCMLLR. Given the relationship between JUD and
VTS these are closely related to those given in [5].

2. Noisy CMLLR
This section presents a general probabilistic model for the cor-
rupted speech in the feature space. First, assume that the cor-
rupted speech observation ot can be written as a generative
model of the clean speech vectors st in the form

ot = Hst + g + nt (1)

whereH is a linear transform andg is a bias on the clean speech1

and nt is a zero-mean Gaussian additive noise with covariance
matrix Ψ such that nt ∼ N (0,Ψ). Furthermore, the clean
speech st is assumed to be generated by state θt of an HMM. The
speech acoustic modelM consists of Gaussian components each
defined by a prior, cm, mean, μ(m)

s , and diagonal covariance
matrix, Σ(m)

s , so

p(st|M, θt) =
∑

m∈θt

cmN (st;μ
(m)
s ,Σ(m)

s ) . (2)

1For simplicity of notation a single transform is assumed per the ho-
mogeneous block. The extension to multiple transforms using regression
class tree is trivial.
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The corrupted speech observation ot at time t is assumed to
be conditional independent of all other observations given the
clean speech and the noise at that time. Then the corrupted
speech likelihood for a component m can be expressed as

p(ot|M,m) = N
(
ot;Hμ(m)

s + g,HΣ(m)
s HT +Ψ

)
.

(3)
This form of likelihood expression is closely related to forms of
the shared factor analysis (FA) model, e.g. [7]. These have the
same general form as the generative model in (1). However there
are a couple of important differences. First, NCMLLR utilises
the shared loading matrices and noise variances as transforms
rather than as a method for covariance matrix modelling. Sec-
ond the dimensions of the observation and latent variable space
are required to be the same for NCMLLR. Though a restric-
tion, this allows some computational advantages for NCMLLR.
Equation 3 can be rewritten as

p(ot|M,m) = |A|N
(
Aot+b;μ(m)

s ,Σ(m)
s +Σb

)
(4)

where A = [H]-1, b = −[H]-1g and Σb = AΨAT. Normally
FA-style models are computationally expensive when calculat-
ing the log-likelihood. Depending on the dimensionality of the
latent this can be the cost of a full-covariance matrix calculation.
In contrast for NCMLLR the variance bias can be restricted to
be diagonal, so that if the speech covariance matrix is diagonal,
diagonal log-likelihood calculations can be performed.

NCMLLR is also related to CMLLR [2] where

p(ot|M,m) = |A|N
(
Aot+b;μ(m)

s ,Σ(m)
s

)
(5)

CMLLR can also be expressed as a generative model where

ot = Hst + g; st = Aot + b

Both CMLLR and NCMLLR have an affine transform of the
feature, but in NCMLLR (4) there is an additional variance bias,
Σb, for modelling the changes in the variance of the corrupted
speech due to noisent, hence the name. NCMLLR has the same
form as the JUD transform. However here the parameters of the
NCMLLR transform are estimated in a maximum likelihood
(ML) fashion rather than being based on a mismatch function
describing the impact of noise on the clean speech and noise
model estimates. As it is not necessary to specify a mismatch
function allowing more complex forms of front-end processing
to be used with NCMLLR than JUD.

3. Adaptive Training with NCMLLR
In this section, the ML estimation of the NCMLLR parameters
and their use in adaptive training is described. Adaptive train-
ing with NCMLLR follows the general adaptive training frame-
work [1, 2]. The canonical acoustic model parameter M and set
of NCMLLR parameters T are estimated such that they max-
imise the likelihood of the heterogenous training data comprised
of H homogeneous block, O = {O(1), . . . ,O(H)}.

In a similar fashion to the EM approach described in [8], the
clean speech vectors are considered to be hidden in the NCMLLR
model. LetM and T are the current model and set of NCMLLR
parameters, {T (1), . . . , T (H)}, and M̂ and T̂ the model and
set of NCMLLR parameters to be estimated. Following [9], the

auxiliary function may be expressed as2

Q(M, T ;M̂, T̂ ) = K − 1

2

H∑

h=1

T (h)∑

t=1

M∑

m=1

γ
(mh)
o,t E

[
log |Ψ̂(h)|

+ (ot−Ĥ(h)st−ĝ(h))TΨ̂
(h)-1

(ot−Ĥ(h)st−ĝ(h))

+ log |Σ̂(m)

s |+(st−μ̂(m)
s )TΣ̂

(m)-1
s (st−μ̂(m)

s )|ot,m
]

(6)

where γ(mh)
o,t is the posterior probability of component m given

the observation sequence O(h), NCMLLR parameter set T (h),
and model set M for homogenous block h. This auxiliary func-
tion will be iteratively optimised by first updating the NCMLLR
transform parameters then the canonical model parameters.

3.1. NCMLLR Transform Estimation

First the NCMLLR transform parameters for each homogeneous
block h are estimated. These can either be estimated using
{A(h),b(h),Σ

(h)
b }, or the related {H(h),g(h),Ψ(h)}. The

transform parameters are found by maximising the auxiliary
function in (6) with respect to the transform parameters. Rather
than optimising H(h) and g(h) separately, they are combined
into an extended transformation matrix V̂(h) = [ĝ(h) Ĥ(h)]
applied to an extended clean vector ζT

t = [1 sTt ].
Initially considering the variance bias. Differentiating (6)

with respect to Ψ̂
(h)

and equating to zero yields

Ψ̂
(h)

=

∑
m,t γ

(mh)
o,t E

[
(ot − V̂(h)ζt)(ot − V̂(h)ζt)

T|ot,m
]

∑
m,t γ

(mh)
o,t

(7)

If used directly this could yield a full variance bias Σ̂
(h)

b , re-
sulting in a full covariance-matrix likelihood calculation cost.

Instead using the equality Σ̂
(h)

b = Â(h)Ψ̂
(h)

Â(h)T, an ML di-
agonal estimate of the variance bias can be found using3

Σ̂
(h)

b = diag

⎛
⎝
∑

m,t γ
(mh)
o,t E

[
(ŝ

(h)
t − st)(ŝ

(h)
t − st)T|ot,m

]

∑
m,t γ

(m)
o,t

⎞
⎠

(8)

where ŝ
(h)
t = Â(h)ot + b̂(h). Thus Σ̂

(h)

b is estimated given
Â(h) and b̂(h). Differentiating (6) with respect to V̂(h), and
equating to zero, gives

V̂(h)=

(∑

m,t

γ
(mh)
o,t ot E

[
ζT
t |ot,m

])(∑

m,t

γ
(mh)
o,t E

[
ζtζ

T
t |ot,m

])-1

(9)
Both (8) and (9) can be expressed in terms of the conditional
expectations of the extended clean speech vector

E [ζt|ot,m] = [1 E[sTt |ot,m]]T = [1 s̃(mh)T
t ]T (10)

E
[
ζtζ

T
t |ot,m

]
=

[
1 s̃(mh)T

t

s̃(mh)
t Σ̃

(mh)
s + s̃(mh)

t s̃(mh)T
t

]
(11)

where

s̃(mh)
t = Ã(mh)ot+b̃(mh); Σ̃

(mh)
s = (Σ(m)-1

s +Σ
(h)-1
b )-1 (12)

2The dependence on the model, M, and transform parameters, T ,
are dropped for notational simplicity.

3It is not necessary to use diagonal versions of the variance bias, but
this makes the likelihood calculations efficient, see [9] for details. This
option is not normally possible with FA-based approaches.
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and

Ã(mh) =
(
Σ(m)-1

s +Σ
(h)-1
b

)-1
Σ

(h)
b A(h) (13)

b̃(mh) =
(
Σ(m)-1

s +Σ
(h)-1
b

)-1 (
Σ(m)-1

s μ(m)
s +Σ

(h)-1
b b(h)

)

Thus V̂(h) can be found given Σ̂
(h)

b . Hence Â(h) and b̂(h) can
be obtained using for example A(h) = [H(h)]-1. NCMLLR
transform estimation is itself an iterative process, interleaving

estimates of Σ̂
(h)

b , and Â(h) and b̂(h).

3.2. Canonical Model Parameter Estimation

After a new set of NCMLLR transform parameters have been
estimated, the canonical model parameters must be retrained.
The auxiliary function in (6) can again be used. Differentiating

(6) with respect to μ̂(m)
s and Σ̂

(m)

s , leads to the update formulae
as follows:

μ̂(m)
s =

∑
h,t γ

(mh)
o,t E [st|ot,m]
∑

h,t γ
(mh)
o,t

(14)

Σ̂
(m)

s = diag

(∑
h,t γ

(mh)
o,t E

[
sts

T
t |ot,m

]
∑

h,t γ
(m)
o,t

− μ̂(m)
s μ̂(m)T

s

)

The conditional expectations in the above equations are given

in (10) and (11), so for example E
[
sts

T
t |ot,m

]
= Σ̃

(mh)
s +

s̃(mh)
t s̃(mh)T

t .
The above expressions have described maximum-likelihood

estimation of the canonical model parameters. It is also pos-
sible to perform discriminative, here minimum phone error
(MPE) [10], training of the model parameters. For MPE training
the following criterion is minimised

Fmpe(M) =

H∑

h=1

∑

H
P (H|O(h), T (h),M)L(H,H(h)

ref ) (15)

where L(H,H(h)
ref ) is the “loss” measured at the phone-level

between the hypothesis and referenceH(h)
ref . Using a weak-sense

auxiliary function [10] the MPE estimate of the mean is given
by

μ̂(m)
s =

∑
h,t(γ

(mh)
no,t − γ

(mh)
do,t )E [st|ot,m] +Dmμ(m)

s + τpμ
(m)
p∑

h,t(γ
(mh)
no,t − γ

(mh)
do,t ) +Dm + τp

where γ
(mh)
no,t and γ

(mh)
do,t are the numerator and denominator

“posteriors”, Dm is the component-specific smoothing constant,
and μ(m)

p and τp are the I-smoothing prior and constant re-
spectively. For this work the MMI-estimate is used as the I-
smoothing prior. In common with other discriminative adap-
tive training schemes, e.g. [11], only the canonical models were
trained using MPE given ML transform estimates. For further
details see [9].

3.3. Implementation Issues

There are a number of issues that must be considered when us-
ing NCMLLR, either as a transform in themselves or in adaptive
training. When using full linear transforms, A(h), it is neces-
sary to store full outer-product observation statistics for each
component. Equation 9 requires the term otE

[
ζT
t |ot,m

]
which

from (12) needs functions of oto
T
t for each component. Terms

like this are not required for CMLLR estimation as observation
outer-products can be accumulated at the base-class level. As all
components tend not to be observed when estimating a particu-
lar transform, this is practical even for large vocabulary systems
by only generating accumulation space on demand. This is not
an issue when using diagonal transforms. Note unlike CMLLR
estimation, the transform update formulae are applicable with
both diagonal and full covariance canonical models.

Another problem, also observed with JUD compensation, is
that the magnitude of the transform matrix and hence the variance
bias, both become very large in low SNR regions. Because the
corrupted speech distribution is dominated by the noise in the
region of low speech energy, the cross-covariance Σso will be
approximately zero. That is, the clean speech and the corrupted
speech will be uncorrelated since the clean speech and noise are
independent. The cross-covariance term Σ

(m)
so for component

m in these low SNR regions is given by

Σ(m)
so = E

[
(st − μ(m)

s )(ot − μ(m)
o )T

]
= Σ(m)

s HT ≈ 0

In the NCMLLR scheme, the transform matrix H will tend to
zero in low SNR, henceA goes to infinity along with the variance
bias Σb. To prevent this problem it is sensible to limit the possi-
ble values for the compensation parameters. The compensation
parameters can then be restricted by enforcing a maximum on
the variance bias for dimension i used in (12) and (13) so that

σ
(h)2
bi ≤ ρ · σ(m)2

si (16)

where ρ is an empirically determined constant. Performance
was found to be relatively insensitive to ρ over a range of values
for each of the tasks examined.

4. Experiments and Results
The use of NCMLLR transforms for use in adaptation and adap-
tive training was evaluated on two tasks, noise corrupted Re-
source Management (RM) and in-car data collected by Toshiba.
Though a wide-range of possible contrasts are possible, the tasks
were configured so that there was sufficient data for linear trans-
forms to be robustly estimated. Thus NCMLLR was compared
with CMLLR as a standard scheme for adaptation and adaptive
training.

Initial experiments were conducted on the medium vocab-
ulary speech recognition task, the 1000 word Resource Man-
agement (RM) database. The 39 dimensional feature vector
consists of MFCCs, including the 0th cepstra, and associated
1st- and 2nd-order coefficients. Cross-word, state-clustered tri-
phone acoustic models with 6 components per state were used
along with a simple word pair grammar. Operations Room noise
from the NOISEX-92 was artificially added to at the waveform
level database to give 20dB and 14dB SNR test sets. All results
are averaged across the feb89, oct89 and feb91 test sets. The
multi-style model was built from data with Operations Room
noise added at the speaker level at SNRs of 8, 14, 20, 26 or 32
dB. This was also used as the initial model to begin adaptive
training. 16 regression classes were used for diagonal linear
transforms, while a single regression class for a global trans-
form4. The variance bias Σb was restricted to be diagonal. For
initial iteration of EM algorithm, A = I, b = 0 and large
diagonal biases were used as the initial values.

Table 1 shows the performance of both NCMLLR adapta-
tion and use in adaptive training compared to CMLLR with both

4Using multiple full-transforms did not yield performance gains.
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System Adapt
20db 14dB

diag full diag full

Multi-style
— 7.0 15.4

CMLLR 5.8 5.6 13.0 13.4
NCMLLR 6.4 6.0 12.1 11.6

Adaptive CMLLR 5.3 4.3 12.0 10.5
Training NCMLLR 5.0 4.5 9.9 9.1

Table 1: Performance of multi-style and adaptive training with
16-diagonal, or 1-full, transform CMLLR and NCMLLR on the
RM task.

diagonal and full transforms. For the low SNR condition, 14dB
SNR, NCMLLR out-performed CMLLR. This is expected as
NCMLLR allows a bias term to model additional uncertainty. If
the SNR was increased to 20dB, CMLLR out-performed NCM-
LLR for the multi-style systems. For multi-style trained systems
it is unclear what the variance will model as the acoustic models
themselves model speech and noise. For adaptive training, the
performance was mixed at 20dB, though the best performance
was obtained with the full CMLLR adaptively trained system.

The Toshiba task is a small/medium sized task with noisy
speech collected in the office and in cars driving at various condi-
tions. For this work two in-car test sets consisting of phone num-
bers were used. This phone-number task comprises unknown-
length digit sequences. The performance was evaluated on two
different conditions: engine on (ENON) and highway driving
(HWY). The average SNRs these tests are 35dB and 18 dB,
respectively. Similar features and model topology to the RM
system were used, except normalised log energy instead of 0th
cepstra. The WSJ SI284 training data was used to train a multi-
style system model. Noise-corrupted multi-condition data were
generated by adding car noise at the speaker level at average
SNRs of 15, 18, 25 and 35 dB. The noise added during train
was different to that of the test data. About 6400 distinct states
were generated with 16 Gaussian components per state. Only
diagonal CMLLR/NCMLLR transforms were used for this task.
Both ML and MPE canonical models were trained (there is not
sufficient data to robustly train MPE system on the RM tasks).
For additional information about the task and training procedure
see [9].

System
Adapt ENON HWY
(diag) ML MPE ML MPE

Multi-
— 1.2 0.8 6.7 5.0

style
CMLLR 0.3 0.3 2.4 2.0

NCMLLR 0.5 0.6 2.1 1.9

Adaptive CMLLR 0.3 0.2 2.1 1.5
Training NCMLLR 0.3 0.2 1.8 1.2

Table 2: Performance of ML and MPE trained multi-style
and adaptive training with 16-diagonal transforms CMLLR and
NCMLLR compensation on Toshiba in-car phone-number task.

Table 2 shows the results on the phone-number task for ML
multi-style and adaptive training models with 16-diagonal trans-
forms. For multi-style systems in the HWY condition, NCM-
LLR was better than CMLLR. However NCMLLR performed
worse than CMLLR in the ENON condition. This is similar
to patterns obtained on RM where at high SNR conditions and
multi-style. For the systems trained with adaptive training NCM-
LLR outperformed, or matched, CMLLR for all conditions.

For the HWY condition NCMLLR was significantly, using the
matched-pair test, different to the CMLLR system.

Table 2 also shows the performance of MPE-trained sys-
tems. As expected performance gains were obtained over the
equivalent ML-systems. The same general trends as for ML-
training can be observed with NCMLLR performing better at
the lower SNR conditions. For NCMLLR the gains from using
MPE training with a multi-style trained system were small, less
than 10% relative on HWY, whereas for adaptive training the
gain was over 30% relative. Though not as extreme, the same
is true for CMLLR where there a 19% relative reduction using
MPE over ML for the multi-style system. The gain was 28% for
the adaptively trained systems.

5. Conclusions
This paper has described adaptive training using NCMLLR for
handling noise-corrupted training data. NCMLLR is an exten-
sion to CMLLR that allows the additional uncertainty that results
from noisy data to be modelled. ML training of NCMLLR trans-
forms and their use for adaptive training with both the ML and
MPE trained canonical models are described. Two databases
were used for assessing NCMLLR, a noise corrupted version of
the RM and in-car recorded data. On both tasks model compen-
sation and adaptive training with NCMLLR outperformed the
traditional CMLLR scheme at lower SNR. The useful of adap-
tive training when using discriminative training is also demon-
strated. Future work will examine using the ML and MPE canon-
ical model training described here in the joint adaptive training
framework, as JUD and NCMLLR have the same form.
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