10.21437 /Interspeech.2009-247

mm

INTERSPEECH
2009 BRIGHTON

A General-Purpose 32 ms Prosodic Vector for Hidden Markov Modeling

Kornel Laskowski 2, Mattias Heldner ® and Jens Edlund ®

! Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, USA
2 Institut fiir Anthropomatik, Universitit Karlsruhe, Karlsruhe, Germany
3 KTH Speech, Music and Hearing, Stockholm, Sweden

kornel@cs.cmu.edu,

Abstract

Prosody plays a central role in conversation, making it impor-
tant for speech technologies to model. Unfortunately, the ap-
plication of standard modeling techniques to the acoustics of
prosody has been hindered by difficulties in modeling intona-
tion. In this work, we explore the suitability of the recently
introduced fundamental frequency variation (FFV) spectrum as
a candidate general representation of tone. Experiments on 4
tasks demonstrate that FFV features are complimentary to other
acoustic measures of prosody and that hidden Markov models
offer a suitable modeling paradigm. Proposed improvements
yield a 35% relative decrease in error on unseen data and simul-
taneously reduce time complexity by a factor of five. The result-
ing representation is sufficiently mature for general deployment
in a broad range of automatic speech processing applications.

1. Introduction

Prosody plays a crucial role in conversation, as it is associ-
ated with the structuring of speech as well as with speaker
attitude and intention. Computational approaches to measur-
ing prosodic phenomena are therefore important in automatic
speech processing systems [1], if such systems are to behave
in a manner consistent with human expectations of their inter-
locutors [2]. Although many frame-level features have been
proposed which correlate with loudness, speaking rate, voice
quality, and rhythm, those which correlate with pitch typically
require long observation times for robustness. Pitch is also
strongly speaker-specific and, for many tasks, requires addi-
tional estimation of normalization parameters [3, 4]. These as-
pects, and the discontinuity of pitch at the edges of voicing,
make intonation difficult to model for individual frames.

To address this problem, an instantaneous and continuous
representation of fundamental frequency variation (FFV) has
been proposed [5, 6]. To date, it has been shown to be useful for
speaker-change prediction [5] and floor mechanism detection
[7], in anechoic-chamber and non-anechoic-chamber record-
ings, respectively. In addition, FFV bias has been shown to be
speaker-discriminative in the same ways that Mel-cepstral fea-
tures are, given single-state Gaussian mixture models [8]. In
spite of advances in these application areas, FFV computation
is approximately realtime, making it relatively expensive.

In the current work, we explore FFV features to detect di-
alog acts (DAs) known as floor holders and holds [7], and ask
the following four questions (in Sections 4, 6, 7, and 8, respec-
tively), ultimately answering them in the affirmative:

1. Is feature space rotation necessary for tasks related to in-
ference of dialog structure, in non-anechoic recordings?
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2. Do FFV features yield improved performance when com-
bined in feature space with correlates of loudness, voic-
ing, and speaking rate?

3. Can the computation time be reduced at minimal cost to
task accuracy?

4. Do standard higher-complexity acoustic modeling tech-
niques apply to FFV features?

Improvements resulting from our investigations yield consistent
and significant gains, cumulatively reducing an agglomerated
development set error measure on four related tasks by 11.1%
absolute, or 39.0% relative. The corresponding reduction of the
same error measure on an equally large unseen data set is 10.3%
absolute or 35.4% relative.

2. Data

The data used in this work is drawn from the ICSI Meeting
Corpus [9] and its associated MRDA dialog act annotations
[10]". To our knowledge, it is the largest publicly available cor-
pus of naturally-occurring multiparty conversation, consisting
of longitudinal collections of meetings by several groups, and
amounting to over 66 hours of meeting time. As defined in
its release notes, 73 of the meetings have been divided into a
TRAINSET of 51 meetings and a DEVSET and EVALSET of 11
meetings each. For our experiments, we draw training exem-
plars from TRAINSET, development exemplars from DEVSET,
and unseen testing exemplars from EVALSET.

We consider 4 different but related binary classification
tasks for which data is drawn separately:

Task 1A classification of the first 500 ms of each talkspurt as
implementing a floor holder (or hold) vs. another DA
type;

Task 2A classification of the last 500 ms of each talkspurt as
implementing a floor holder (or hold) vs. another DA
type;

Task 1B classification of the first 500 ms of each DA begin-
ning in mid-talkspurt as implementing a floor holder vs.
another DA type; and

Task 2B classification of the last 500 ms of each DA ending in
mid-talkspurt as implementing a floor holder vs. another
DA type.

Talkspurts, as used here, are contiguous intervals of speech
and are obtained using forced alignment of human-transcribed
words. Tasks 1A and 2A assume that only this segmentation is
available. Tasks 1B and 2B, in contrast, assume that the speech
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TRAINSET DEVSET EVALSET
Task 1A 5000 1000 1000
Task 2A 5000 1000 1000
Task 1B 1200 240 240
Task 2B 750 180 180

Table 1: Number of instances of both classes in each binary
classification task, per data set.

stream has been DA-segmented (but not DA-classified), which
may or may not be the case in a fully automatic setting.

We note that by frequency of occurrence, floor holders and
holds account for only a small proportion of DAs produced dur-
ing a conversation. In this work, we consider each classification
task on a balanced prior set, meaning that the number of exem-
plars for both classes is bound by the number of corresponding
DAs in the minority class. These numbers are given in Table 1;
exemplars were drawn randomly from each data set. The result-
ing set of exemplars is the same as used in [7].

3. Baseline

The fundamental frequency variation (FFV) representation is a
7-element characterization of within-frame variation in funda-
mental frequency. Its computation, which obviates the need to
first estimate the fundamental frequency itself, was described in
[5, 71; here, space limitations allow for only a brief account.

Following pre-emphasis (1 —0.9727"), the signal is framed
into 32 ms overlapping windows, with a frame step of 8 ms.
Two frequency spectra, Fr, and F g, are computed for the left
and right halves of each frame, respectively, using tapered and
largely disjoint windows. Each of the two spectra is then dilated
in frequency, over a continuum of dilation factors, while the
other spectrum is kept constant. A modified dot-product yields
ameasure of alignment g (p) of their respective harmonic trains,
for dilation factor p. We note that frame energy is normalized
out of this representation.

We oversample g (p) at discrete equi-spaced intervals of p,
and then pass the resulting vector through a filterbank whose de-
sign was motivated by psychoacoustic studies [11] (and whose
central 5 filters are shown in Figure 1(a)). This leads to the
7-element representation of [5, 7].

For each binary classification task, we estimate 10 hid-
den Markov models (HMMs) M. per class ¢ over sequences
of feature vectors using maximum likelihood expectation-
maximization’ (EM), from training material belonging to that
class. As in [5], we use models of 4 fully-connected states and
a single 7-dimensional Gaussian for the emission probability of
each state. Automatic classification is performed by using the
ratio of the average log likelihood (LL), over 10 HMM models,
of a candidate sequence. Varying the ratio threshold allows for
easy construction of receiver operating curves (ROC).

In scoring our systems, we use two agglomerate error mea-
sures over the four proposed tasks. First, we report the classi-
fication error when the LL ratio threshold is zero; the agglom-
erate measure is weighted by the number of training exemplars
in each task. Because in natural settings priors over the phe-
nomena of interest are quite skewed, we also report the ROC
discrimination (the area below the ROC curve). Agglomerate

2Kevin Murphy’s implementation in Matlab™ | available at
http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html,
was used for all HMM operations (downloaded on Feb 9 2009).
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ROC discrimination is also weighted by the number of exem-
plars in TRAINSET. Both measures for the baseline system are
shown in line 1 of Table 2, and are identical to those in [7].

4. Feature Space Rotation

Our experience from [5] has been that, for speaker-change pre-
diction, scaling and/or rotation of the feature space significantly
improves classification using the baseline model. Trends are
similar for the current task, as shown in Table 2; (2a) represents
mean subtraction and variance scaling (Z-transform), with pa-
rameters inferred from TRAINSET, while (2b) shows results fol-
lowing a global PCA transform (also inferred from TRAINSET).
For Z-transformed data, we observe a reduction of classifica-
tion error of 3.0% absolute and of ROC discrimination error of
3.3% absolute, relative to the raw feature baseline.

[ System | Acc | ROC |
1 Baseline 64.8 | 71.5
2a | Z-Transform 65.7 | 73.8
2b | PCA Rotation 67.8 | 74.8
3 Quadratic Fit 68.9 | 76.7
4a | Auxiliary Features 64.8 | 71.3
4b | Combination 69.6 | 77.6
Sa | Exclusion of Extremity Filters 69.1 | 77.0
5b | Improvement of Extremity Filters | 70.5 | 78.9
6 4 states, 2 Gaussians 71.7 | 80.3
7a | 8 states, 1 Gaussian 713 | 794
7b | 8 states, 2 Gaussians 73.0 | 81.5
7c | 8 states, 3 Gaussians 73.3 | 824

Table 2: Accuracy in % for a log-average-likelihood-ratio
threshold of zero and ROC discrimination in % on DEVSET.

5. A Modified Filterbank

Our attempts to render the FFV features more robust have led
to a modified filterbank structure, and were motivated by the
parabolic shape of the locus of responses in the 5 central filters
(cf. [7]), which we refer to as Gs. We have replaced G5 with
its least-mean-squares (LMS) quadratic approximation

(-2 -2 1
(-1 -1 1 a
G = 02 o0 1 b (1)
(+1)% +1 1 c
(+2)* +2 1

for the LMS parabola described by y = ax? + bz + ¢; we refer
to the matrix in Equation 1 as X. This defines a rotation of G,

(X- (XTX)_l -XT> Gs |

which, when composed with the baseline filterbank, effectively
induces a new filterbank structure; both are shown in Figure 1.
As shown in Table 2 (line 3), the filterbank modification yields
a 1.1% absolute and a 1.9% absolute reduction of the classi-
fication error and the ROC discrimination error, respectively.
Although the new filterbank exhibits unexpected response char-
acteristics (e.g. broader support of filters corresponding to slow
pitch change), these consistent reductions of an agglomerate er-
ror (and almost all individual task errors in Table 3) suggest that
it nevertheless better approximates human perception.

Gs = 2
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Figure 1: The 5 central filters of the original (a) and of the mod-
ified (b) filterbank. The z-axis is in semitones per 8 ms.

6. Combination with Other Features

As mentioned in the introduction, an important question
is whether the FFV spectrum combines with other well-
understood prosodic features to yield further improvements. As
suggested in [7], it appears to also capture differences in speak-
ing rate; in [8], when applied to the task of speaker identifica-
tion, it was shown to degrade performance when combined with
MFCC features at the feature level (but led to improvements
when combined in model-space).

We propose an auxiliary vector of 5 relatively standard fea-
tures, namely: overall log-energy above 300 Hz as a correlate
of loudness, a log-energy difference between the two windows
used to compute the FFV spectrum (as a correlate of change
in loudness), the normalized height of the first autocorrelation
peak (which is used as an indicator of the probability of voic-
ing), and the cosine similarity measure between the Mel-spectra
for the two FFV windows, in both the raw and log domain. The
latter are energy-normalized measures of spectral flux, and cor-
relate with speaking rate. Table 2 shows that the performance
of these features is significantly above random guessing on this
task but lower than that of the FFV spectrum (at line 3) by 4.1%
absolute and 5.4% absolute for classification and ROC discrimi-
nation errors, respectively; feature-space combination with FFV
spectrum features leads to improvements of 0.7% and 0.9%, re-
spectively, relative to FFV features alone. We applied a global
PCA transform to all 12 features in the combined feature space,
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and have not attempted other combinations.

7. Runtime Improvements

Next, we address the problem entailed by the two extremity fil-
ters in the baseline filterbank, whose combined support is 256
points, requiring us to scale F;, and Fr 128 times each (fol-
lowed by 256 256-point dot products). This is significantly in
excess of the 23 points comprising the support of the 5 central
filters, Gs, as shown in Figure 2. These two filters appear im-
portant; during voiced speech, they capture local minima corre-
sponding to +-1-octave errors and thereby play an implicit nor-
malization role for G (via PCA). Eliminating them leads to
degraded performance, shown in line 5a of Table 2 relative to
line 4b.

Instead, we propose an improved design by fixing the sup-
port of the extremity filters to 23 points each, centered on the lo-
cations where we expect the largest magnitude +1-octave error.
Surprisingly, this modification not only reduces time complex-
ity by a factor of more than five (from 256 to 2 x23 dot dilations
and products), it also leads to a reduction of both classification
error and ROC discrimination error, of 0.9% and 1.3% respec-
tively.
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Figure 2: Left extremity filter, temporal support of the 5 central
filters, and right extremity filter of the original (a) and of the
modified (b) filterbank. The z-axis is in octaves per 8§ ms.

8. Standard GMM Modeling

Finally, we sample several points in model complexity to verify
the applicability of techniques which have long become stan-
dard for acoustic models in automatic speech processing appli-
cations. These are shown in lines 6 and 7a-c of Table 2. We
stress that our goal is demonstrative and not intended to find
a global optimum; these parameters should be optimized on a
corpus of continuous speech rather than on isolated DA start
and end snippets. However, the results clearly show improve-
ment as both the number of states per HMM and components
per GMM are increased. The configuration with highest com-
plexity achieves reductions of 2.8% and 3.5% for the classifica-
tion and ROC discrimination errors, respectively.



System Task 1A Task 2A Task 1B Task 2B
DEVSET EVALSET DEVSET EVALSET DEVSET EVALSET DEVSET EVALSET
1 74.9 74.1 70.1 67.0 67.3 64.7 76.0 77.7
2b 75.8 76.0 74.3 70.8 68.4 66.4 79.3 82.6
3 78.3 77.9 73.4 71.3 70.8 68.2 81.0 83.3
4b 79.0 79.6 75.7 75.0 76.2 72.4 82.8 83.6
5b 79.2 80.2 75.8 75.5 78.5 74.5 81.2 82.7
7a 80.3 82.0 77.4 75.8 78.9 75.5 82.7 81.8
7b 81.4 83.6 78.6 78.7 83.2 77.3 81.9 83.1
e 82.2 83.9 79.8 78.3 82.8 75.3 85.1 84.7

Table 3: ROC discrimination in % on DEVSET and EVALSET, using the single best pair of density models for classification as selected
using DEVSET, for the four individual tasks in our study. Best performance per column shown in bold.

9. Generalization to Unseen EVALSET Data

In this final experimental section, we investigate how the im-
provements observed on DEVSET generalize to data not seen
during development. To facilitate experiments, we select that
pair of HMMs, out of the 10 trained for each binary class in each
task, which yields the highest ROC discrimination on DEVSET.
We then apply that pair to classify instances in EVALSET. The
results are shown individually for all 4 tasks for both DEVSET
and EVALSET, in Table 3.

As can be seen, with very few exceptions, the improve-
ments shown in Table 3 yield consistent improvements on each
task. Where exceptions do arise, they are limited to only one
of DEVSET or EVALSET (such as line 3 for task 2A), or they
occur for tasks 1B and/or 2B for which the amount of training
material was relatively small (cf. Table 1).

Overall, our improvements appear to reduce baseline per-
formance differences across the four tasks. Task 2A, cor-
responding to end-of-talkspurt detection of floor holders and
holds, continues to prove more difficult than its beginning-of-
talkspurt counterpart. The most dramatic improvement can be
seen for task 1B (mid-talkspurt DA-terminal detection of floor
holders) on DEVSET, but the proposed modifications have a
much smaller impact on EVALSET data for this task. The rel-
atively large increases in ROC discrimination observed in line
4b for tasks 2A and 1B suggest that our auxilary features play
a large role for these two tasks. This may corroborate our find-
ings in [7], and indicates that although the FFV spectrum seems
to also capture some speaking rate effects, features specific for
that purpose may exhibit significant complimentarity.

10. Conclusions and Future Directions

We have performed several important modifications to the FFV
spectrum and benchmarked their performance, both individ-
ually and collectively, on 4 tasks related to floor control in
naturally-occurring, multi-party speech. Of the proposed modi-
fications, the most important include: a demonstration of com-
plimentarity with features correlated with loudness, voicing,
and speaking rate; a demonstration of applicability of a stan-
dard acoustic model paradigm; and a reduction of processing
time by a factor of five. We have also proposed improvements
of a structural nature, involving improved filterbank design and
feature rotation. All modifications show consistent improve-
ments when averaged across the 4 tasks explored, on both de-
velopment and unseen test data. Absolute reductions of ROC
discrimination error for the two data sets were shown to be
11.1% and 10.3% respectively, comprising relative reductions
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0f 39.0% and 35.4%.

Our results suggest that, in its current state, the proposed
FFV representation of instantaneous intonation is directly de-
ployable in the acoustic space of a variety of speech process-
ing applications, in conjunction with standard feature extraction
such as that of MFCCs. Potential applications include addi-
tional discrimination for automatic speech recognition of tonal
languages, as well as alternate phone and/or word models im-
plementing competing dialog act productions.
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