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Abstract

In this paper, we propose a media-specific forward error 
correction (FEC) method based on Huffman coding for 
distributed speech recognition (DSR). In order to mitigate the 
performance degradation of DSR in noisy channel 
environments, the importance of each subvector for the DSR 
system is first explored. As a result, the first subvector 
information for the mel-frequency cepstral coefficients 
(MFCCs) is then added as an error protection code. At the 
same time, Huffman coding methods are applied to 
compressed MFCCs to prevent the bit-rate increase by using 
such protection codes,. Different Huffman trees for MFCCs 
are designed according to the voicing class, subvector-wise, 
and their combinations. It is shown from the recognition 
experiments on the Aurora 4 large vocabulary database under 
several noisy channel conditions that the proposed FEC 
method is able to achieve the relative average word error rate 
(WER) reduction by 9.03~17.81% compared with the standard 
DSR system using no FEC methods.  
Index Terms: Distributed speech recognition, forward error 
correction (FEC), media-specific FEC, MFCC, Huffman 
coding  

1. Introduction
With the advancement of technology associated with wireless 
network systems, the demand for wireless and mobile devices 
has also dramatically increased. These portable devices are 
typically small in size and difficult to manipulate. Thus, 
speech recognition is a promising user interface to make these 
devices easier to use, since speech recognition using a 
microphone  can take the place of a keyboard or a touch pad 
[1]. A major problem, however, is in that the high 
computational complexity of speech recognition is insufficient 
for most portable devices. Therefore, a new approach, 
distributed speech recognition (DSR), was developed to 
implement speech recognition in portable devices. In 
particular, the European Telecommunication Standards 
Institute (ETSI) has published several versions of DSR front-
end standards, the most recent of which is defined in [2-3].  

DSR operates by splitting the functions of speech 
recognition into a front-end and a back-end; the former is 
performed in the portable device and the latter in a designated 
speech recognition server with a high computational power. 
The primary purpose of the DSR front-end is to extract speech 
recognition features, such as the mel-frequency cepstral 
coefficients (MFCCs), commonly used for speech recognition. 
The front-end then compresses the MFCCs into the smallest 
possible number of bits and transmits them to the speech 
recognition server over a network.  

One problem, however, is that when channel errors occur, 
DSR performance can degrade due to distortion of the MFCCs 
decoded at the server. There are several techniques which can 
assist in overcoming this problem. Forward error correction 
(FEC) is actually one of the typical techniques. In general, 
assigning more bits to an FEC will improve the quality of 
speech recognition [4]. Therefore, it is important to not only 
reduce the bits for the FEC using an unequal error protection 
(UEP), but also reduce the bits for MFCCs to accommodate 
the error protection bits. The UEP method for a DSR system 
has been previously proposed in [4]; however, this method 
was designed for channel coding. 

Several coding methods for compressing MFCCs have 
been proposed [1-2, 6-8]. In early attempts at compression, 
scalar quantization or vector quantization was applied to 
MFCCs, and the word error rates (WERs) of a DSR system 
were measured according to various bit-rates [5]. To reduce 
the bit-rate against the quantization applied to individual 
frame, the interframe correlation property of MFCCs was 
utilized for quantization [6]. In addition, a transform coding 
technique using a discrete cosine transform (DCT) was 
proposed for MFCC compression. This technique used both 
the intra-frame and the inter-frame correlations of MFCCs [7]. 
However, these techniques increased the WER while the bit-
rate was decreased.  

Alternatively, the entropy coding technique, using the 
compressed MFCC, can achieve the bit-rate reduction with no 
degradation in speech recognition performance. An entropy 
coding technique developed for video coding was applied to 
MFCCs extracted under the ETSI DSR framework [8]. In this 
framework, speech frames were grouped using the concept 
referred to as a group of pictures (GOPs) followed by the 
application of Huffman coding [9] to each group. This reduced 
the bit-rate for MFCCs from 44 to 34.4 bits/frame. This 
technique, however, caused the error propagation from the 
predictive frame and the bi-predictive frame techniques.  

In this paper, we first explore the importance of 
compressed MFCCs and the energy subvector in order to 
design the FEC method. We then propose a media-specific 
FEC method for a DSR system based on the speech 
recognition experiments. Following this, to reduce the bit-rate 
of MFCC, we measure the variance of the entropy of the 
feature parameters according to the voicing class. This 
variance implies that MFCCs and log energy in the same class 
have higher redundancies, allowing the bit-rates of the 
compressed MFCCs and log energy to be further reduced by 
using an entropy coding method. Therefore, we propose a 
class-dependent Huffman coding method to further obtain a 
coding gain over the compression of MFCCs and log energy 
according to the voicing class. In addition to such class-
dependent Huffman coding, this method utilizes the principle 
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that the correlation between MFCC subvectors within the 
frame is lower than the correlation of each subvector between 
frames. This brings us to consider Huffman coding in a 
subvector-wise fashion. In addition to this, we propose a 
hybrid Huffman coding that combines class-dependent with 
subvector-wise Huffman coding based on entropy comparison. 
Finally, we compare the average word error rate (WER) of the 
standard DSR system applied to the Aurora 4 database to that 
of the DSR system using the proposed FEC method.  

The remainder of this paper is organized as follows. In 
Section 2, the media-specific FEC method is proposed and, in 
Section 3, we describe the traditional, class-dependent, and 
subvector-wise Huffman coding methods. We can then 
combine class-dependent coding with subvector-wise coding 
to take the advantages of each method for compressing feature 
parameters. In Section 4, the performance of the proposed 
FEC method is measured and compared with the standard 
DSR system. Finally, we conclude in Section 5. 

2. Media-Specific FEC Method 
In order to determine the protection subvector, we use the 
average WER to analyze the effect of each subvector on the 
speech recognition performance. This is a necessary 
investigation to design a media-specific FEC method. To this 
end, we selected the Aurora 4 large vocabulary database [10] 
which is a standard DSR database used by ETSI to evaluate 
the performance of large vocabulary continuous speech 
recognition in the DSR framework. All utterances were 
sampled at a rate of 16 kHz. There are two different versions 
for training, clean-condition training and multi-condition 
training, and the multi-condition training set was used here. In 
order to test the proposed Huffman coding methods, we used a 
part of the database composed of 166 utterances under seven 
different background noise conditions such as clean, car, 

babble, street traffic, airport, restaurant, and train station noise 
conditions. 

Table 1 shows the average WERs of the DSR systems 
classified by nine configurations under a frame loss rate of 
10%. To generate the error patterns, an error insertion process 
was carried out, which is based on the Gilbert-Elliot model 
defined in ITU-T G.191 [11]. Here, the burst error factor, �, 
was set to 0.50. The first and second columns of the table 
show the average WERs of the baseline DSR system under no 
frame loss and those of the DSR system under a frame loss 
rate of 10%, respectively. In this paper, when a frame loss 
occurred, the MFCCs of the current frame were replaced with 
those of the previous frame. The remaining columns of the 
table show the average WERs in cases when only one 
subvector was protected under the frame loss condition. As 
shown in this table, the highest priority of subvectors was the 
subvector of (C1,C2). That is, it was possible to reduce the 
average WERs by recovering the subvector of (C1,C2) in the 
frame loss condition. We therefore propose a media-specific 
FEC method, where the packet of the current frame includes 
the subvector of (C1,C2) of the previous frame to reduce the 
WERs under the frame loss condition. 

To prevent the bit-rate from being increased when the 
proposed FEC method is applied, we can use the Huffman 
coding method to assign the reduced bits to the proposed FEC 
method. In other words, we generate the FEC information for 
the m-th frame, FEC(m), as 
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where N is the floored integer of available bits by the Huffman 
coding method, and 1 2, ( )C Cidx m�  is the time difference of the 
(C1,C2) subvector, defined as 

 
1 2 1 2 1 2, , ,( ) ( ) ( 1)C C C C C Cidx m idx m idx m� � � � ,          (2) 

 
where 1 2, ( )C Cidx m is the subvector index of (C1,C2) in the m-th 
frame. By using the proposed FEC method, the subvector of 
(C1,C2) is protected from a single frame loss. For example, if 
the previous frame is lost and the present frame is received 
correctly, the subvector of (C1,C2) is recovered as  
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Figure 1: Proposed media-specific FEC method based on
Huffman coding for the DSR framework. 

Table 1. Word error rate (%) of different DSR systems on the task of the Aurora 4 database under a frame loss rate of 10%  

Test 
condition 

Baseline 
(no error) 10% error 

Perfectly protected single parameter (10% error) 
(C1,C2) (C3,C4) (C5,C6) (C7,C8) (C9,C10) (C11,C12) (C0, log-E) 

Clean 17.68 18.78 18.64 18.71 18.45 18.82 18.90 18.56 18.67 
Car 19.71 21.29 20.85 21.66 26.36 21.62 21.44 21.51 21.18 
Babble 25.01 26.92 36.34 27.11 26.56 26.85 26.74 26.48 27.07 
Restaurant 30.72 32.56 31.31 31.71 31.90 31.82 32.19 31.90 32.08 
Street 27.99 29.87 29.80 29.54 29.91 29.54 30.06 30.06 30.13 
Airport 26.74 28.77 28.21 28.58 28.43 28.73 27.96 28.69 28.25 
Train station 31.27 32.73 32.81 32.54 32.28 33.00 32.17 32.20 32.06 
Average 25.59 27.27 26.85 27.12 26.98 27.20 27.07 27.06 27.06 
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To recover a single frame loss, the proposed method 
generates an algorithm delay of about one frame length. 
However, it is believed that the WER is decreased because the 
most important subvector is correctly recovered by the 
proposed FEC method. 

3. Huffman Coding Methods for MFCC 

3.1. Traditional Huffman coding  
In traditional Huffman coding, the same Huffman table is 
applied to each feature parameter regardless of voicing class. 
Two Huffman tables are generated in this paper; one for the 
MFCC subvectors and the other for the subvector of (C0, log-
E).  

3.2. Class-dependent Huffman coding
The entropy of MFCCs and log energy varies according to the 
voicing class. This variability implies that MFCCs and log 
energy in the same voicing class have higher redundancies. 
Thus, the bit-rate of the compressed MFCCs and log energy 
can be further reduced by using a Huffman coding that is 
designed according to voicing class. To this end, we classify 
the MFCC subvectors and the subvector of (C0, log-E) into 
four groups based on their voicing class. We then construct 
two Huffman tables for each voicing class; one for the MFCC 
subvectors and the other for the subvector of (C0, log-E). Fig. 
2(a) shows a block diagram of the class-dependent Huffman 
coding. First, the extracted MFCCs and log energy for a given 
analysis frame are quantized as described in Section 2. Then, 
the MFCC subvector indices and the subvector index of (C0, 
log-E) are further compressed using the Huffman tables 
corresponding to the voicing class of the frame. 

3.3. Subvector-wise Huffman coding
In addition to the entropy dependency on the voicing class, the 
entropy of the MFCCs and log energy varies according to the 
subvector. Similar to the interpretation previously described in 
Section 3.2, this variability implies that the MFCCs and log 
energy also have higher redundancies compared to a 
traditional Huffman coding, thus the bit-rate of the 
compressed MFCCs and log energy can be further reduced by 
using Huffman trees designed subvector-wise. Fig. 2(b) 
presents a block diagram of the subvector-wise Huffman 
coding, where the extracted MFCCs and log energy are 
quantized as described in Section 2. Each subvector is then 
further compressed using the Huffman tables corresponding to 
the subvector of the frame. 

3.4. Entropy comparison 
To investigate the extent to which the bit-rate of the 
compressed subvector indices can be reduced using Huffman 
coding, we evaluated the entropy of feature subvector indices 
according to traditional Huffman coding, class-dependent 
Huffman coding, and subvector-wise Huffman coding. Table 2 
shows the measured entropy for each Huffman coding method. 
For this experiment, we used the Aurora 4 large vocabulary 
database [10].  

As shown in the first row of Table 2, traditional Huffman 
coding required 5.79 and 7.07 bits/frame for the MFCC 
subvectors, C1-C12, and the subvector of C0 and log-E, (C0, 
log-E), respectively. On the contrary, 5.75 and 6.72 bits/frame 
were required for C1-C12 and the subvector of (C0, log-E), 
respectively, for class-dependent Huffman coding. The 
classification percentages for non-speech, unvoiced speech, 
mixed-voiced speech, and fully voiced speech were measured 
at 10.82, 33.78, 9.20, and 46.18%, respectively. These 
percentages were employed to calculate the weighted average 
bits/frame of class-dependent Huffman coding. In the case of 
subvector-wise Huffman coding, 5.24 and 7.07 bits/frame 
were required for C1-C12 and the subvector of (C0, log-E).  

3.5. Hybrid Huffman coding 
As can be seen in Table 2, the MFCC subvectors had smaller 
entropy when differential Huffman coding was applied. Based 
on this observation, it can be concluded that hybrid types of 
Huffman coding can be made by combining class-dependent 
or subvector-wise Huffman coding methods with the 
differential Huffman coding method. Fig. 2(c) shows the 

Table 2. Average entropy comparison (bits/frame) of each 
subvector for the different Huffman coding methods. 

Method C1–C12 (C0,log-E) 
Traditional Huffman coding 5.79 7.07 

Class-
dependent 
Huffman 
coding 

Non-speech 5.50 6.55 
Unvoiced  5.73 6.85 

Mixed-voiced  5.66 6.76 
(Fully) Voiced  5.85 6.66 

Average 5.75 6.72 

Subvector-
wise 

Huffman 
coding 

(C1,C2) 5.42 

7.07 

(C3,C4) 5.02 
(C5,C6) 5.48 
(C7,C8) 5.32 
(C9,C10) 4.91 
(C11,C12) 5.20 
Average 5.24 7.07 

Figure 2: Block diagrams of (a) class-dependent Huffman 
coding, (b) subvector-wise Huffman coding, and 
(c) hybrid Huffman coding. 

Table 3. Average entropy comparison (bits/frame) of the 
hybrid Huffman coding method. 

Method Non- 
speech 

Un-
voiced 

Mixed-
voiced 

(Fully) 
Voiced Average 

(C1,C2) 4.46 5.28 5.22 5.19 5.14 
(C3,C4) 3.49 4.66 4.22 5.41 4.84 
(C5,C6) 4.54 5.22 4.98 5.70 5.35 
(C7,C8) 4.60 5.13 4.85 5.71 5.32 
(C9,C10) 4.17 4.59 4.39 5.25 4.83 
(C11,C12) 4.53 4.91 4.75 5.50 5.13 

(C0,log-E) 6.55 6.85 6.76 6.66 6.72 
Total 32.34 36.64 35.18 39.42 37.32 
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proposed hybrid Huffman coding method according to voicing 
class and subvector-wise, respectively. In other words, the 
differential coding is applied to both the class-dependent 
Huffman coding and the subvector-wise Huffman coding. 

Table 3 shows the entropy comparison of the hybrid 
Huffman coding method. It is shown from the table that the 
proposed hybrid Huffman coding has the smallest entropy of 
the Huffman coding methods.  

4. Performance Evaluation 
From the experiment described in Section 3.5, the hybrid 
Huffman coding method can give an average bit reduction of 
about 6.35 bits/frame. That is, the FEC(m) can use 64 indices 
as the time difference of the (C1,C2) subvector for error 
protection.  

To evaluate the performance, the average WERs of the 
baseline system, the standard DSR system, and the DSR 
system using the proposed FEC method were compared under 
four different frame loss rates of 5%, 10%, 20% and 50% 
using the Aurora 4 large vocabulary database. Every error 
pattern was generated by an error insertion device using the 
Gilbert-Elliot model defined in ITU-T G.191 [11]. A part of 
the database was used for testing ASR performance, which 
was composed of 166 utterances recorded under seven 
different background noise conditions such as clean, car, 
babble, street traffic, airport, restaurant, and train station noise 
conditions. 

Table 4 shows the average WER of the baseline DSR 
system and the DSR system employing proposed FEC method 
under different frame loss rates. It was shown from the table 
that the relative reductions of the proposed FEC method were 
17.81, 13.70, 15.34, and 9.03% under frame loss rates of 5, 10, 
20 and 50%, respectively. 1 

5. Conclusion
In this paper, we proposed a media-specific forward error 
correction (FEC) based on Huffman coding for distributed 
speech recognition (DSR). To reduce the word error rate 
(WER) in noisy channels, we investigated the importance of 
each subvector for the DSR system. The media-specific FEC 
method based on the investigation was then designed. 
Moreover, to prevent the bit-rate from increasing under the 
proposed FEC method, a hybrid Huffman coding method 
taking into account voicing class and subvector-wise were also 
applied to the compressed MFCC feature parameters. It was 
                                                                 
1 The relative reductions are calculated as  

.proposed baseline

standard baseline

WER WER
relative reduction

WER WER
�

�
�

 

shown from the ASR experiments conducted on the Aurora 4 
large vocabulary database that the proposed method provided 
a 9.03~17.81% reduction in the WER as compared with the 
standard DSR system.  
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