
Compacting Discriminative Feature Space Transforms for Embedded Devices

Etienne Marcheret1, Jia-Yu Chen 2, Petr Fousek3, Peder Olsen1, Vaibhava Goel 1

1IBM T. J. Watson Research, Yorktown Heights, NY, USA
2Dept. of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

3IBM Research, Prague, Czech Republic
{etiennem,pederao,vgoel}@us.ibm.com chen192@uiuc.edu petr fousek@cz.ibm.com

Abstract

Discriminative training of the feature space using the minimum
phone error objective function has been shown to yield remark-
able accuracy improvements. These gains, however, come at
a high cost of memory. In this paper we present techniques
that maintain fMPE performance while reducing the required
memory by approximately 94%. This is achieved by design-
ing a quantization methodology which minimizes the error be-
tween the true fMPE computation and that produced with the
quantized parameters. Also illustrated is a Viterbi search over
the allocation of quantization levels, providing a framework for
optimal non-uniform allocation of quantization levels over the
dimensions of the fMPE feature vector. This provides an addi-
tional 8% relative reduction in required memory with no loss in
recognition accuracy.
Index Terms: Discriminative training, Quantization, Viterbi

1. Introduction
Discriminative training of the feature space using the minimum
phone error objective function was introduced by Povey et. al.
in [1], and enhanced in [2]. On our tasks this technique has
given remarkable improvements. For instance, in an embedded
setup the sentence error rate for a maximum likelihood trained
system was 5.83%, a system built with model space discrimina-
tive training was 4.89%, and with feature space discriminative
training (fMPE) was 3.76%.
The price of these gains is a parameter space consisting of mil-
lions of parameters, and recognition accuracy rapidly degrades
when the number of parameters are reduced. This introduces a
tradeoff in embedded ASR systems, where optimal fMPE per-
formance translates into unacceptable consumption of memory.
In this paper we investigate techniques to maintain optimal
fMPE performance while reducing the required memory. fMPE
is reviewed in Section 2. Sections 3 through 6 provide details
of the proposed compression scheme, and results are presented
in Section 7.

2. fMPE Parameters and Processing
Pipeline

The fMPE process can be described by two fundamental stages.
The first stage, level 1, relies on a set of Gaussians G to project
the input d-dimensional feature xt to the offset features.

o(t, g, i) =

8<
: γg

“
x
(i)
t −μ

(i)
g

”

σ
(i)
g

if i ≤ d

5γg if i = d+ 1
(1)

where t denotes time, and i denotes offset dimension. γg is
the posterior probability of g ∈ G given xt, where g(xt) =
N (xt;μg , σg). G, g = 1, . . . , G, is arrived at by clustering the
Gaussians of original acoustic model.
In general o(t, g, i) contains (d + 1) ∗ G elements. For com-
putational efficiency all γg below a threshold th are set to 0.0;
resulting in a sparse o(t, g, i).
The output of level 1 is

b(t, j, k) =
X
g,i

M1(g, i, j, k)o(t, g, i) (2)

=
X

g:γg>th

X
i

M1(g, i, j, k)o(t, g, i). (3)

where tensor M1 is parameterized by Gaussian g ∈ {1 · · · G},
offset dimension i ∈ {1 .. (d + 1)}, and by the outer-context
j ∈ {1 .. (2octx+1)} and final output dimension k ∈ {1 .. d}.
The next stage of fMPE, level 2, takes as input b(t+ l− ictx−
1, j, k) for l ∈ {1 .. (2ictx + 1)} and computes its output as

δ(t, k) =
X
j

X
l

M2(j, k, l)b(t+ l − ictx− 1, j, k) (4)

δ(t, k) is added to xt(k) to compute the fMPE features.
In our typical setup, G is 512, d is 40, octx is 4, and ictx is 8.
This results in M1 with 512∗41∗40∗9 = 7557120 parameters.
The posterior threshold th is typically 0.1, resulting in a small
number of active Gaussians per xt. For each active Gaussian,
level 1 requires 41∗40∗9 = 14760 floating point operations. At
level 2, M2 contains 9∗40∗(2∗8+1) = 6120 parameters, and
computation of δ(t, k) at level 2 requires 6120 floating point
operations.
As seen above, the level 1 fMPE process dominates in the
amount of CPU and memory used. For the example given here,
7.5 million M1 parameters use 30.5M of memory, 50 times the
memory used in our standard embedded acoustic model, which
requires approximately 600K of memory.
In the following section we investigate reducing fMPE memory
and CPU requirements by changing parameters such octx, ictx,
and G.

3. Parameter Impact on fMPE
Performance

Figure 1 illustrates the impact of reducing octx, G, and ictx on
ASR sentence error rate (SER). The test set shown in Figure 1,
is comprised of 39K sentences, 206K words recorded in the car
at 0, 30 and 60 mph.
From Figure 1, we see that as our memory usage drops from
30M to 1M we have a 25% increase in SER for the parameter-
ized curve.

Copyright © 2009 ISCA 6-10 September, Brighton UK228

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

9-
82



0 5 10 15 20 25 30 35
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

G
ra

m
m

ar
 S

E
R

Memory, MB

Parameterized
Quantized

Figure 1: Impact of reducing fMPE memory usage on SER. The
curve labelled “Parameterized” is obtained by changing fMPE
parameters as discussed in Section 3. The curve “Quantized”
is obtained by quantizing and learning quantization levels as
discussed in Sections 4 and 5.

4. Quantization of Level 1 Transform
We tried the following schemes for quantizing the level 1
transform M1

Global, linear (GlobalL): All entries of M1 were quan-
tized using a single quantization table. The min and max
values were determined, and the range between min and max
was linearly divided into desired number of quantization levels.

Per Gaussian, k-means (GaussK): Parameters corresponding
to each Gaussian index g in M1(g, i, j, k) were quantized
separately using their own quantization table. The K-means
algorithm [3] was used to determine the quantization levels.

Per Dimension, k-means (DimK): Parameters correspond-
ing to each dimension index k were quantized separately using
their own quantization table. K-means algorithm described
above was used to determine the quantization levels.

Quantization levels were further optimized as described
in the following.

5. Optimization of Level 1 Transform
Quantization

Let δQ(t, k) denote the feature perturbation obtained using the
quantized level 1 transform M1Q. To learn M1Q, we minimize

E =
X
t,k

“
δ(t, k)− δQ(t, k)

”2
(5)

Using indicators Ip(g, i, j, k), and quantization table q = {qp}
M1Q(g, i, j, k) can be written as

M1Q(g, i, j, k) =
X
p

qpIp(g, i, j, k). (6)

To ensure that M1Q(g, i, j, k) is equal to one of the quantiza-
tion values in q, we impose the additional constraint that for

each (g, i, j, k) only one of Ip(g, i, j, k) can be 1.
The quantized level 1 features, corresponding to (3) are

bQ(t, j, k) =
X
p

qp
X
g,i

Ip(g, i, j, k)o(t, g, i), (7)

and the quantized perturbation (4)

δQ(t, k) =
X
p

qp
X
j,l

M2(j, k, l) (8)

×
X
g,i

Ip(g, i, j, k)o(t+ l − ictx− 1, g, i).

We define the level 1 statistic as

S1(t, j, k, p) =
X
g,i

Ip(g, i, j, k)o(t, g, i), (9)

and define the level 2 statistic

S2(t, k, p) =
X
j,l

M2(j, k, l)S1(t+l−ictx−1, j, k, p). (10)

The quantized perturbation (8) becomes

δQ(t, k) =
X
p

qp S
2(t, k, p), (11)

and the error (5) is a quadratic in q

E =
X
t,k

 
δ(t, k) −

X
p

qpS
2(t, k, p)

!2

,

=
X
k

A(k) + qTB(k)q− 2qT c(k) (12)

where

A(k) =
X
t

δ(t, k)2

B(k, p1, p2) =
X
t

S2(t, k, p1)S
2(t, k, p2)

c(k, p) =
X
t

δ(t, k)S2(t, k, p).

The minimum is achieved at

q̂ =

 X
k

B(k)

!−1X
k

c(k) (13)

If we have a separate quantization table q(k) per dimension,
then E =

P
k E(k) with

E(k) = A(k) + qT (k)B(k)q(k)− 2qT (k)c(k) (14)

and minimum attained at

q̂(k) = B−1(k)c(k) (15)

with

Ê(k) = A(k) + q̂T (k)B(k)q̂(k)− 2q̂T (k)c(k) (16)

We note that the sufficient statistics, and consequently the opti-
mum q̂(k), are a function of Iq(g, i, j, k). Further reduction in
error may be obtained by reassigning M1 entries to quantiza-
tion levels (i.e. updating Iq(g, i, j, k)) and iterating. However,
we did not do that in this paper.

229



5.1. Level 1 and 2 Scaling

From equations (3) and (4), we note that δ(t, k) can be ex-
pressed in terms of the product M1(g, i, j, k)M2(j, k, l). It is
therefore invariant to the following form of scaling

M1(g, i, j, k)

a(j, k)

`
M2(j, k, l)a(j, k)

´
. (17)

The quantization levels do not satisfy the same scale invariance,
and so q̂(k) and the accuracy of the quantization will change
with the scaling a(j, k).
With the a(j, k) scaling the level 2 statistic (10) becomes

S2(t, j, k, p) =
X
l

a(j, k)M2(j, k, l)

×S1(t+ l − ictx− 1, j, k, p), (18)

where we have removed the summation across outer dimension
j. The error to be minimized becomes

E =
X
t

δ(t, k)2 − 2
X
t

δ(t, k)
X
p

qp(k)
X
j

S2(t, j, k, p)

+
X
p1,p2

qp1(k)qp2(k)

×
X
t

X
j1,j2

S2(t, j1, k, p1)S
2(t, j2, k, p1). (19)

Given that we know the analytic minimum with respect to q(k)
the per dimension error is

E(k) = A(k) +
X
j1

a(j1, k)c
T
j1(k)

×
 X

j3,j4

a(j3, k)a(j4, k)Bj3,j4(k)

!−1

×
 X

j2

a(j2, k)cj2(k)

!
, (20)

where

B(k) =
X
j1,j2

a(j1, k)a(j2, k)Bj1,j2(k)

Bj1,j2(k, p1, p2) =
X
t

S2(t, j1, k, p1)S
2(t, j2, k, p2)

c(k) =
X
j

a(j, k)cj(k)

cj(k, p) =
X
t

δ(t, k)S2(t, j, k, p). (21)

It is not clear how to optimize (20) analytically with respect to
{a(j, k)}j , therefore we resort to numerical optimization. The
gradient of E(k) is given by

∂E(k)

∂a(j, k)
= 2c(k)TB(k)−1cj(k)− 2cT (k)B(k)−1 × X

j2

a(j2, k)Bj2,j(k)

!
B(k)−1c. (22)

6+4

6

10

12

240

To
ta

l L
ev

el
s

Dim

Desired number
of levels

4+6

5+5

Figure 2: Viterbi search for optimal target number of quantiza-
tion levels.

6. Optimal Quantization Level Allocation
with a Viterbi Search

Let n(k) denote the number of levels in q(k). The size of M1Q

is determined by the total number of levels n =
P

k n(k).
The independence of errors E(k) across dimensions allows
us to formulate a Viterbi procedure that, given a desired
n, finds optimal allocation n(k). Prior to carrying out this
procedure, we find, for each dimension k, E(k, n(k)) for
n(k) = 1, . . . , L.

The Viterbi procedure is
1. Initialize V (1,m) = E(1,m) for m = 1, . . . , L

2. For k = 2 . . . d, apply the recursive relation

V (k,m) = min
a+b=m

(E(k, a) + V (k − 1, b))

3. Once k = d is reached, backtrack to find level assign-
ment for each dimension.

This technique is illustrated in figure 2, where we have a 40 di-
mensional feature vector with a maximum of 6 available quanti-
zation levels per dimension. Therefore the maximum total num-
ber of quantization levels is 240, and the minimum is 40. The
back pointers indicate back tracking from a desired n to obtain
optimal allocation n(k).

7. Experimental Evaluations
7.1. Experimental Setup

The ASR system is evaluated on various grammar tasks relevant
to the in-car embedded domain, this includes digit strings, com-
mand and control, and navigation. There are 39K sentences and
206K words in the testset.
To obtain another error rate measurement, we built a word uni-
gram LM and decoded test set using that.
The basic audio features extracted by the front-end are 13 di-
mensional Mel-frequency cepstral coefficients at a 15 msec
frame rate. After cepstral mean normalization, nine consecu-
tive frames are concatenated and projected onto a 40 dimen-
sional space through an LDA/MLLT cascade. The recognition

230



system is built on three-state left-to-right phonetic HMMs with
865 context dependent states. The context tree is based on a
word internal model, spanning 5 phonemes (2 phonemes on ei-
ther side). Each context dependent state is modeled with a mix-
ture of diagonal Gaussians for a total of 10K Gaussian models.
The models are trained on 790 hours of data.

System grammar unigram Mem
SER WER (MB)

fMPE baseline 3.76 17.91 30.2
GlobalL 256 lvl 3.78 18.00 7.56
GlobalL 16 lvl 4.17 19.57 3.78
GaussK 10 lvl 3.83 18.08 3.15
DimK 6 lvl 3.83 18.26 2.83

+ learned 3.79 17.95 2.83
+ scaled 3.80 17.96 2.83

DimK 4 lvl 3.86 18.61 1.89
+ learned 3.77 17.97 1.89
+ scaled 3.79 17.98 1.89

DimK 2 lvl 4.31 20.37 0.94
+ learned 3.83 18.91 0.94
+ scaled 3.85 18.90 0.94

Table 1: ASR performance with baseline and various configu-
rations. GlobalL, GaussK, and DimK are as described in Sec-
tion 4. The rows labeled “+ learned” indicate levels obtained
according to (15). Rows labeled “+scaled” indicate levels ob-
tained with scaling, as discussed in Section 5.1.

System learned learned
+ scaled

DimK 1 lvl 0.39 1.06
DimK 2 lvl 27.08 28.06
DimK 3 lvl 36.12 37.13
DimK 4 lvl 35.59 36.41
DimK 5 lvl 34.06 35.01
DimK 6 lvl 30.64 31.62

Table 2: Percent reduction in error due to learning quantization
levels. The reductions are measured relative to the initial assign-
ment using DimK method, as described in Section 4. “learned”
refers to obtaining quantization levels according to (15), and
“learned + scaled” refers to obtaining the levels as described in
Section 5.1.

7.2. Experimental Results

Our key result is summarized in Figure 1. The bottom curve
shows impact of fMPE transform quantization on memory and
grammar sentence error rate (SER). We achieve a reduction of
94% in memory (30.2M is reduced to 1.89M), with almost no
increase in SER.
These numbers are presented in some more detail in Table 1.
As seen from this Table, our distortion minimization approach
allows us to quantize using 4 levels (2 bits) resulting in memory
usage of 1.89MB, while affecting SER from baseline of 3.76 to
3.77 and WER using the unigram LM from 17.91 to 17.97. For
the 2 level (1 bit) case, the unigram performance has a 14% rel-
ative degradation (17.91 to 20.37) which reduces to 5% relative
degradation after optimizing the quantization levels.

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

Dimension

A
cc

um
ul

at
ed

 e
rr

or

Viterbi Search, 160 levels

Viterbi
Uniform

Figure 3: Accumulated error as a function of dimension under
Viterbi and uniform allocation.

Table 2 presents the error reduction obtained by learning the
quantization levels. This table shows that a large reduction is
achieved with learning. Most of this reduction comes from (15).
A smaller (approximately an additional 1.0% relative reduction)
is achieved with the scaling discussed in section 5.1. We note
that the slight reduction in error by use of scaling is not reflected
in the recognition error rates shown in table 1.
Figure 3 shows accumulated error as a function of dimension
under Viterbi and uniform allocations. The target number of
levels was 160, corresponding to a uniform assignment of 4 lev-
els per dimension. The Viterbi algorithm gives approximately
12% relative reduction in the error over uniform assignment.
Looking at Table 3, we see that this reduction in quantization er-
ror does not translate to a reduction in grammar SER. However,
the Viterbi algorithm provides flexibility to pick the optimal as-
signment for any desired total number of levels. In particular,
we can choose less than 80 total levels, resulting in an average
of less than 1 bit per dimension.

System Grammar Unigram Mem Quant
SER WER (MB) Error

DimK 4 lvl 3.79 17.98 1.89 0.027
DimK 2 lvl 3.85 18.90 0.94 0.099
160 lvl Viterbi 3.79 18.01 1.85 0.024
147 lvl Viterbi 3.78 18.08 1.74 0.028
100 lvl Viterbi 3.82 18.49 1.22 0.061
80 lvl Viterbi 3.88 19.06 0.92 0.098
70 lvl Viterbi 4.07 19.76 0.71 0.125

Table 3: ASR performance, quantized transform size (MB), and
quantization error for uniform vs. Viterbi allocation.

8. References
[1] Povey, D., Kingsbury , B., Mangu, L., Saon, G., Soltau, H.,

Zweig., G. “FMPE : Discriminatively Trained Features for Speech
Recognition”, in ICASSP, 2005.

[2] Povey, D. “Improvements to fMPE for Discriminative Training of
Features”, in Interspeech, 2005.

[3] Duda, R., Hart, P., Stork, D. “Pattern Classification, Second Edi-
tion”, John Wiley & Sons, Inc., 2001.

231


