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Abstract 
Microsoft Recite is a mobile application to store and retrieve 
spoken notes. Recite stores and matches n-grams of pattern 
class identifiers that are designed to be language neutral and 
handle a large number of out of vocabulary phrases. The 
query algorithm expects noise and fragmented matches and 
compensates for them with a heuristic ranking scheme. This 
contribution describes a class of indexing algorithms for 
Recite that allows for high retrieval accuracy while meeting 
the constraints of low computational complexity and memory 
footprint of embedded platforms. The results demonstrate that 
a particular indexing scheme within this class can be selected 
to optimize the trade-off between retrieval accuracy and 
insertion/query complexity. 

 
Index Terms: recite, speech index, speech retrieval 

1. Introduction 
This paper describes indexing for storage and retrieval of 
spoken notes on a mobile platform. An example of such an 
application is Microsoft Recite (http://recite.microsoft.com). 
Notes are inserted as well as queried using speech. In this 
context, the primary challenge that emerged was the design of 
an indexing scheme that would serve as a consistent and noise 
robust one-way hashing function from a single user’s speech 
into a symbol stream. 

This application and device context imposes certain 
constraints which have guided our algorithm design choices 
in order to improve the overall user experience. First there is 
the issue of out of vocabulary (OOV) phrases. User studies 
revealed early on in the project, that our target device would 
have to deal with a large percentage (e.g. 20%+) of OOVs. A 
typical example is: “Grocery list: milk, eggs, hummus, pita 
bread, Camembert”. Second, the quality of retrieval must be 
exceptionally good. If the correct match is not in the top 5 
results then the user will probably consider the query as 
having failed because a mobile interface (Figure 1) makes it 
very arduous to go through a long list of suggested matches. 
Third, the system needs to be exceptionally noise robust, 
because the device may be used under many different 
environmental conditions, as well as need to cope with intra-
user speech variations. Also, the index and retrieval system 
must support out of order query terms, because the user is 
very likely to not remember the order of things they inserted, 
e.g. the query for the above reminder is very likely to be: 
“Grocery list: pita, milk”. Everything about such a system, 
including recognition, compression, tagging, indexing and 
query/retrieval must be real-time and fit on a mobile or 
embedded platform with frugal memory footprint and CPU 
cycle budgets. All of these design constraints make ours a 
challenging research problem. Next we will outline the 
rationale underlying some of our design choices. 

 
 

 
Figure 1: Recite query interface (on mobile phone) 

The choice of “what to index” is a critical one for speech 
based indexing. The existing literature shows a rich diversity 
of approach in this area. Large Vocabulary Continuous 
Speech Recognition (LVCSR) word and phoneme based 
lattices are compared in [2]. Sub-word units or “particles” are 
reported in [3]. We investigated indexing with traditional 
language model (LM) based approaches, but our results 
corroborate those of [5], i.e. this approach fared very poorly 
given our high OOV rate. Furthermore, the large memory and 
CPU cost of using LMs could not be justified on our 
resource-constrained platform. We also investigated indexing 
with more primitive representations such as quantized smooth 
group delay spectrum features [4], but found that the data rate 
and entropy (i.e. quantization range) incoming into the 
database were too large to support real time retrieval.  

In our application context, it is a high priority to deal with 
OOV, as well as be language neutral to a large degree – these 
made indexing on symbols derived from phonemes an 
attractive proposition. At the same time, Recite is primarily 
meant to be used by a single user, as it is a mobile phone 
application. That allows us to utilize certain speaker-centric 
features. Therefore, we combined supervised classes derived 
from confusability clusters of phonemes, as well as 
unsupervised classes which capture information about speech 
transients and other non-phonemic information, into an 
extended symbol alphabet. The index stores and matches n-
grams of this set of symbols. 

The next task involved defining a new metric to report 
and track success, given the needs of our particular 
application. In this respect, Recite differs from many speech 
indexing applications reported in the literature ([2][3]) which 
target huge databases and have a “computer screen” like 
visual form factor interface for presenting the query results. In 
our case the response must always and only be real time, and 
the CPU/memory footprints must always be small enough to 
fit on a mobile or embedded platform. But more importantly, 
due to our restricted interface, the correct query results need 
to be at the top, or it just won’t work for the end user. 
Therefore, after doing user group studies we came up with the 
following simple metric to track and report success of our 
end-to-end system:  
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Successful result = Exact Match In Top 5          (1) 
 
Our query algorithm is based on approximate string 

matching with an inverted n-gram index that expects errors in 
both inserted and query strings. It has similarities to [6], in 
that we also define a noise robust index for 
fragmented/overlapping matching sub-sequences, and the 
scoring is similar, in that in a final step, all high ranking 
hypotheses are further examined by aligning and scoring the 
areas of corresponding similarity regions, and paired regions 
are extended in both directions. However, our queue based 
insert and query algorithms are 1-pass and O(N) in the strings 
being inserted and queried, whereas the querying algorithm 
used in [6] is a 2-pass algorithm, and we use an exponential 
scoring scheme that is more resilient to noise.  

We will proceed to describe and analyze the indexing 
algorithms in greater detail in the following sections. 

 

2. Indexing Algorithms 
There are two versions of n-gram indexes in the Recite 
family: a hierarchical and a multi-level version. Both versions 
are basically an inverted n-gram symbol index. The 
hierarchical version trades off space for query speed (i.e. 
bigger disk footprint), whereas the multi-level version takes 
less disk space and allows trading off query speed and search 
accuracy. These combinations allow us to tune these 
algorithms for different run time platforms, all the way from 
small mobile devices to server based systems, where we can 
turn up the accuracy. 

2.1. Hierarchical N-gram index 

In the hierarchical version, at insertion time we index the 
incoming sequence of symbols by creating 2-gram, 3-gram, 
…, MaxNGram nodes of all n-gram subsequences that occur 
in the lattice of symbols. At query time, we check to see how 
the n-grams from the query string match with existing nodes 
in the database and score the ones that have long contiguous 
matching runs. Our scoring algorithm described in section 3 
accounts for fragmentation of long runs, i.e. have some 
number of insertions, deletions and substitutions within a run 
of matching symbols. Additionally, the scores of the matching 
regions are boosted based on the relative similarity of time 
durations of matching symbols. 

2.1.1. Hierarchical Insert and Query 

Both insert and query use queue-based algorithms. As each 
symbol is processed, we adjust either the index at insertion 
time or the matching runs at query time, and the symbol 
queue moves to the next symbol position. Items get de-
queued either when their length exceeds MaxNGram at insert 
time, or when they stop matching strings in the database at 
query time. Both insert and query are 1-pass and only ever 
visit each symbol position once, i.e. they are O(N) in the 
length of the inserted and queried strings.  

Figure 2 and Figure 3 show pseudo-code for insert and 
query algorithms respectively. Hashed tree traversals are 
constant time, such as in LZW [1]. In these figures, R is a set 
of (S, p) pairs that share a common n-gram, where S is an 
inserted string id and p is a position within S. Rn denotes the 
set R that is associated with n-gram node n. Si is the ith symbol 
in S and Qi is the ith symbol in Q. 

 

 
Figure 2: Hierarchical insert algorithm 

At insertion time, we insert all 2-grams, 3-grams, … 
MaxNGram-grams at each symbol position. In practice, 
MaxNGram = 4 is a good choice where we can trade off node 
congestion with size of the database (see also Figure 5 in the 
experimental results section). For a string of length L and n-
grams of length N, we know that the number of n-grams is L-
N+1. Additionally, if there are A alternates at each symbol 
position in the lattice, we get AN possibilities. In most 
practical phoneme based systems like ours and [7], A ~ 2 is 
sufficient. Therefore the index grows as: (L – 3) x 24 + (L – 2) 
x 23 + (L-1) x 2 = 26L – 66 = O(L), i.e. linearly in L. 

The query algorithm proceeds by finding all matches with 
proper subsets of matching symbols. It is trivial to prove that 
all sequences that match on an n-gram must also match on the 
n-1 gram, i.e. matching prefixes. This allows us to “harvest” 
all the nodes that stop matching at a given symbol position 
and score these partial matches. Besides being easy to prove 
correct, this design has the added benefit of being cache 
friendly, because we start by caching in the biggest set of 
matches (e.g. for 2-grams), and refine that by sub-setting, as 
we proceed along the query sequence. 

 

 
Figure 3: Hierarchical query algorithm 

2.2. Multi-level N-gram index 

In the multi-level index, at insertion time we index the 
incoming symbol stream by creating n-grams where “n” is 
fixed at a single configurable setting. This allows us to choose 
any length of n-grams to work with, including the degenerate 

Query(QuerySequence Q) 
{ 
  B <- Empty set of (S, p) 
  SQ <- Empty queue of n-grams (Source) 
  DQ <- Empty queue of n-grams (Destination) 
  for each position p in Q do 
    Swap(SQ, DQ) 
    Enqueue the 1-gram Qi on DQ 
    for each n-gram ngi in SQ do 
      if HashedTreeTraversal(ngi, Qi) exists 
      then Add set difference: Ri-Rn to B 
      else Add the set Ri to B 
      end if 
    end for 
  end for 
  Rank strings in B using SCORE 
  return ranked B 
} 

Insert(InsertSequence S) 
{ 
  SQ <- Empty queue of n-grams (Source) 
  DQ <- Empty queue of n-grams (Destination) 
  for each position p in S do 
    Swap(SQ, DQ) 
    Enqueue the 1-gram Si on DQ 
    for each n-gram ngi in SQ do 
      if HashedTreeTraversal(ngi, Si) exists 
      then Add(S, p) to Rn 
      else if Length(ngi.Si) < MaxNGrams 
      then CreateNewNode(ngi.Si), Add(S, p) 
      end if 
      if Length(ngi.Si) < MaxNGrams 
      then Enqueue the n+1 gram ngi.Si on DQ 
    end for 
  end for 
} 
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unigram or 1-gram case. Reducing n to unigrams improves 
matching accuracy because it allows fragmented matches 
down to the symbol level. However, using low n such as 1 or 
2 slows down the scoring part of the query because the 
scoring algorithm now has to piece together 1-grams or 2-
grams to find all the match regions. Thus, the multi-level 
index allows us to fine tune for speed vs. expected 
noise/desirable accuracy on the target platform, e.g. we only 
use 1-grams on PC and server based systems. 

Since n is fixed, the space requirement of the multi-level 
index is much smaller than the hierarchical one, which 
redundantly stores all the sub n-grams. Additionally, we don’t 
need to perform hashed tree traversals because the n-gram 
nodes may be directly looked up inside a contiguous address 
space numbered 0..MaxNGrams-1. 

2.2.1. Multi-level Insert and Query 

Multi-level insertion is very simple. Since the “n” of each 
n-gram is fixed at a single setting, we simply traverse the 
lattice and sequentially store off each n-gram under its node 
in the database, along with associated offset and duration 
information for those symbols. 

At query time we once again travel along the lattice of 
symbols, and at each point we look up the n-gram node in the 
database, gather all the matching regions from stored 
sequences, and forward them to the scoring algorithm to piece 
together and rank. If n is low, e.g. 2, then there is a lot of 
collision to be expected in the database in each n-gram node, 
and so we have implemented caching and MRU queuing of n-
gram nodes as optimizations. Additionally, when n is low, 
scoring is expected to do a lot more work in piecing 
everything together, but also be more accurate, because we 
can then account for very fine grained fragmentation. These 
observations are corroborated by the results presented in 
section 4 (Table 1). 

 

3. Noise robust scoring of query results 
We now describe the scoring algorithm that we use to rank 
the similarity between strings in the database, S, and a query 
string Q. The scoring algorithm starts with matching n-grams 
retrieved at query time, and pieces the n-grams together into 
longer matching regions and computes a similarity score for 
each string S. The same algorithm applies to both hierarchical 
and multi-level indexes. 

3.1. Problem Formulation 

We define � as the symbol alphabet. Prior to reaching the 
index for insertion or query, each string first passes through a 
noisy channel, NC: ��������. Therefore, one way of looking 
at our problem is that it is a 2-pass (one at insertion, second at 
query) noisy channel indexing system. This abstraction 
captures all forms of noise, e.g. wind, electrical, quantization, 
model/data mismatch, intra-speaker variability, etc., and 
allows us to formulate our algorithms by dealing with noise 
under a unified framework. After inserting N strings, {S}, we 
wish to query on a string Q.  

We define a function, SCORE, that takes a pair of strings, 
Si and Q, and returns a number that induces an ordering on 
{S} such that Si < Sj implies SCORE (Q, Si) < SCORE (Q, 
Sj).  

SCORE has the following properties: 

� Longer contiguous matching sequences will receive 
higher scores than shorter matching sequences. 

� Contiguous matching sequences should allow for some 
small amount of mismatch between the query and 
indexed sequences because of expected corruption of 
each by the noisy channel, NC. 

� A sub-string of Q occurring multiple times in Si will 
receive a score for each occurrence. However, a sub-
string of Si occurring multiple times in Q will not 
receive additional scores for each time it occurs.  

� A score for matching symbols at any position is boosted 
based on similarity of the time durations associated with 
the matching symbols. 

The unit of overlap is defined as a matching region. A 
matching region is a pair of substrings, {SM, QM} (for string 
match and query match), such that: 

� The first symbol of SM matches the first symbol of QM; 
� The last symbol of SM matches the last symbol of QM 
� There must be an alignment between SM and QM, such 

that there are at most, MaxSkips un-aligned symbols 
between any two aligned symbols. For example, if 
MaxSkips = 1, SM = abce and QM = abde, this 
condition holds, but not if SM = abce and QM = ae. 

3.2. Allowing match gaps in query result ranking 

The similarity score can be computed by traversing through 
the indexed database and finding the set of exact matched 
lengths between each string S and Q. If each matched length 
is il  and the duration similarity is id , the similarity score is 
simply the sum of all n matched regions:   

 �
	

�	
n

i

dl iiSQSCORE
0

*)1(2),(  (2) 

We choose exponential scoring because of its noise 
resilience as it automatically filters out short matches in favor 
of long ones, and also because it is cheap to compute with bit 
shifts. We make a small modification to this straightforward 
scoring system to account for the expected gaps in matching 
regions caused by the noise channel NC. Rather than 
requiring that a matched region should contain identical 
symbols for the length of the match, the process of combining 
smaller match regions (MR) into longer extended match 
regions allows for some minor errors in alignment.  

The SCORE algorithm presented in Figure 4 does the 
necessary MR extensions and “hole-filling” operations that 
we need to combat expected noisy matches. It combines all 
substring matches between query string Q and candidate 
strings S in the database. The SCORE algorithm tolerates 
match deviations that are inside of an edit distance E. 

 

4. Experimental results 
Theoretical bounds calculated in Section 2.1 show that the 
absolute size of the index in hierarchical indexing grows 
linearly as the length of inserted sequences. In Figure 5 we 
see that the growth rate of n-gram nodes is linear for synthetic 
randomly generated data, but sub-linear for real data. The 
sub-linear growth in real data is due to the fact that certain n-
grams, e.g. "z" followed by "b" are much less likely than "ih" 
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followed by "ng". Time to query is linear with respect to 
database size and also in the length of the query string.  

 
Figure 4: SCORE algorithm 

Small MaxNGram causes more collisions at each node 
and increases processing burden at query/scoring time, but the 
index grows at a slower rate and processing time decreases for 
insertions. Thus, the value of MaxNGram can be selected to 
trade-off query complexity with indexing complexity. 

 
Figure 5: Growth rates with a) insertion length; b) 
MaxNGrams parameter; and c) on real data 

Table 1 presents the performance of the multi-level 
indexing schemes on a “spoken notes” dataset of 15 users. For 
each user, 100 unique remembrances are inserted. The 
retrieval algorithm is tested using 150 queries from the same 
user, where 30 unique queries are repeated 5 times each. To 
ensure sufficient variability, the user repeats the same query 
only after speaking several other intervening phrases. The 
retrieval accuracy for each user is computed for the cases 
where the exact match result is in the Top 1, Top 5 and Top 
10 of the retrieved results. The overall accuracy is computed 
as an average over all the users.  

Table 1 illustrates the trade-off between retrieval accuracy 
and complexity for various n-gram lengths in multi-level 
indexing. As the n-gram length decreases, the retrieval 
accuracy increases and the insertion complexity decreases. 
However, the query complexity increases, since the scoring 
algorithm needs to perform a lot of additional MR extensions. 
Conversely, as the n-gram length increases, the query 
complexity decreases. However, the retrieval accuracy 

decreases since the scoring may miss smaller match regions, 
and the insertion complexity increases due to the additional 
effort in building larger n-gram indexes. For mobile and 
embedded platforms, 2-grams seem to provide a reasonable 
tradeoff between retrieval accuracy and complexity. For 
platforms with greater computational resources, 1-grams may 
be preferred. An important topic for future research is to 
compare the retrieval performance of the low-complexity 
Recite system against retrieval using LVCSR word and 
phoneme based lattices on the network. 

Table 1. Accuracy vs. complexity trade-off for 
different Ngrams in multi-level indexing. 

  Av. Accuracy 
Av. Complexity 

(ms)  
Memory 

bytes   
Top 
1% 

Top 
5% 

Top 
10% Insert Query 

1-gram 72 87.5 92.3 1.18 261.37 261,636 
2-gram 67.1 84.6 90.7 8.98 28.86 302,242 
3-gram 62.3 80.9 87.9 56.12 16.97 384,174 

 

5. Conclusions 
We have presented two classes of noise robust n-gram symbol 
indexes for “spoken notes” retrieval applications. We also 
presented a query algorithm based on exponential scoring that 
is robust to noise. Experimental results using hierarchical 
indexing show that index size grows linearly with the length 
of inserted sequences. We demonstrated that a particular 
indexing scheme within the multi-level indexing class can be 
selected to optimize the trade-off between retrieval accuracy 
and insertion/query complexity. These indexing algorithms 
can be tailored towards low-complexity speech retrieval 
applications such as Microsoft Recite.  
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SCORE(M: {Candidate sub-strings from Si}) 
{ 
  for i = 0 to |M-1| do 
    for j = i+1 to |M| do 
      if Mi could extend Mj with edit dist E 
      then  
        Extend Mj to include Mi 
        Remove Mi from M 
      end if 
    end for 
  end for 
  Sort M based on length (descending order) 
  Score = 0 
  for i = 0 to |M| do 
    if Mi overlaps with scored region Mprev 
    then  
      MNew = Mi - Mprev 
      Add MNew to M 
    else Score(Q, S)+= 2length(Mi)-1   
    end if 
  end for 
  return Score 
} 
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