
Algorithms for Speech Indexing in Microsoft Recite

Kunal Mukerjee, Shankar Regunathan and Jeffrey Cole

Microsoft Corporation
{kunalm, shanre, jecole}@microsoft.com

Abstract
Microsoft Recite is a mobile application to store and retrieve
spoken notes. Recite stores and matches n-grams of pattern
class identifiers that are designed to be language neutral and
handle a large number of out of vocabulary phrases. The
query algorithm expects noise and fragmented matches and
compensates for them with a heuristic ranking scheme. This
contribution describes a class of indexing algorithms for
Recite that allows for high retrieval accuracy while meeting
the constraints of low computational complexity and memory
footprint of embedded platforms. The results demonstrate that
a particular indexing scheme within this class can be selected
to optimize the trade-off between retrieval accuracy and
insertion/query complexity.

Index Terms: recite, speech index, speech retrieval

1. Introduction
This paper describes indexing for storage and retrieval of
spoken notes on a mobile platform. An example of such an
application is Microsoft Recite (http://recite.microsoft.com).
Notes are inserted as well as queried using speech. In this
context, the primary challenge that emerged was the design of
an indexing scheme that would serve as a consistent and noise
robust one-way hashing function from a single user’s speech
into a symbol stream.

This application and device context imposes certain
constraints which have guided our algorithm design choices
in order to improve the overall user experience. First there is
the issue of out of vocabulary (OOV) phrases. User studies
revealed early on in the project, that our target device would
have to deal with a large percentage (e.g. 20%+) of OOVs. A
typical example is: “Grocery list: milk, eggs, hummus, pita
bread, Camembert”. Second, the quality of retrieval must be
exceptionally good. If the correct match is not in the top 5
results then the user will probably consider the query as
having failed because a mobile interface (Figure 1) makes it
very arduous to go through a long list of suggested matches.
Third, the system needs to be exceptionally noise robust,
because the device may be used under many different
environmental conditions, as well as need to cope with intra-
user speech variations. Also, the index and retrieval system
must support out of order query terms, because the user is
very likely to not remember the order of things they inserted,
e.g. the query for the above reminder is very likely to be:
“Grocery list: pita, milk”. Everything about such a system,
including recognition, compression, tagging, indexing and
query/retrieval must be real-time and fit on a mobile or
embedded platform with frugal memory footprint and CPU
cycle budgets. All of these design constraints make ours a
challenging research problem. Next we will outline the
rationale underlying some of our design choices.

Figure 1: Recite query interface (on mobile phone)

The choice of “what to index” is a critical one for speech
based indexing. The existing literature shows a rich diversity
of approach in this area. Large Vocabulary Continuous
Speech Recognition (LVCSR) word and phoneme based
lattices are compared in [2]. Sub-word units or “particles” are
reported in [3]. We investigated indexing with traditional
language model (LM) based approaches, but our results
corroborate those of [5], i.e. this approach fared very poorly
given our high OOV rate. Furthermore, the large memory and
CPU cost of using LMs could not be justified on our
resource-constrained platform. We also investigated indexing
with more primitive representations such as quantized smooth
group delay spectrum features [4], but found that the data rate
and entropy (i.e. quantization range) incoming into the
database were too large to support real time retrieval.

In our application context, it is a high priority to deal with
OOV, as well as be language neutral to a large degree – these
made indexing on symbols derived from phonemes an
attractive proposition. At the same time, Recite is primarily
meant to be used by a single user, as it is a mobile phone
application. That allows us to utilize certain speaker-centric
features. Therefore, we combined supervised classes derived
from confusability clusters of phonemes, as well as
unsupervised classes which capture information about speech
transients and other non-phonemic information, into an
extended symbol alphabet. The index stores and matches n-
grams of this set of symbols.

The next task involved defining a new metric to report
and track success, given the needs of our particular
application. In this respect, Recite differs from many speech
indexing applications reported in the literature ([2][3]) which
target huge databases and have a “computer screen” like
visual form factor interface for presenting the query results. In
our case the response must always and only be real time, and
the CPU/memory footprints must always be small enough to
fit on a mobile or embedded platform. But more importantly,
due to our restricted interface, the correct query results need
to be at the top, or it just won’t work for the end user.
Therefore, after doing user group studies we came up with the
following simple metric to track and report success of our
end-to-end system:

Copyright © 2009 ISCA 6-10 September, Brighton UK1479

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

9-
45

1

Successful result = Exact Match In Top 5 (1)

Our query algorithm is based on approximate string

matching with an inverted n-gram index that expects errors in
both inserted and query strings. It has similarities to [6], in
that we also define a noise robust index for
fragmented/overlapping matching sub-sequences, and the
scoring is similar, in that in a final step, all high ranking
hypotheses are further examined by aligning and scoring the
areas of corresponding similarity regions, and paired regions
are extended in both directions. However, our queue based
insert and query algorithms are 1-pass and O(N) in the strings
being inserted and queried, whereas the querying algorithm
used in [6] is a 2-pass algorithm, and we use an exponential
scoring scheme that is more resilient to noise.

We will proceed to describe and analyze the indexing
algorithms in greater detail in the following sections.

2. Indexing Algorithms
There are two versions of n-gram indexes in the Recite
family: a hierarchical and a multi-level version. Both versions
are basically an inverted n-gram symbol index. The
hierarchical version trades off space for query speed (i.e.
bigger disk footprint), whereas the multi-level version takes
less disk space and allows trading off query speed and search
accuracy. These combinations allow us to tune these
algorithms for different run time platforms, all the way from
small mobile devices to server based systems, where we can
turn up the accuracy.

2.1. Hierarchical N-gram index

In the hierarchical version, at insertion time we index the
incoming sequence of symbols by creating 2-gram, 3-gram,
…, MaxNGram nodes of all n-gram subsequences that occur
in the lattice of symbols. At query time, we check to see how
the n-grams from the query string match with existing nodes
in the database and score the ones that have long contiguous
matching runs. Our scoring algorithm described in section 3
accounts for fragmentation of long runs, i.e. have some
number of insertions, deletions and substitutions within a run
of matching symbols. Additionally, the scores of the matching
regions are boosted based on the relative similarity of time
durations of matching symbols.

2.1.1. Hierarchical Insert and Query

Both insert and query use queue-based algorithms. As each
symbol is processed, we adjust either the index at insertion
time or the matching runs at query time, and the symbol
queue moves to the next symbol position. Items get de-
queued either when their length exceeds MaxNGram at insert
time, or when they stop matching strings in the database at
query time. Both insert and query are 1-pass and only ever
visit each symbol position once, i.e. they are O(N) in the
length of the inserted and queried strings.

Figure 2 and Figure 3 show pseudo-code for insert and
query algorithms respectively. Hashed tree traversals are
constant time, such as in LZW [1]. In these figures, R is a set
of (S, p) pairs that share a common n-gram, where S is an
inserted string id and p is a position within S. Rn denotes the
set R that is associated with n-gram node n. Si is the ith symbol
in S and Qi is the ith symbol in Q.

Figure 2: Hierarchical insert algorithm

At insertion time, we insert all 2-grams, 3-grams, …
MaxNGram-grams at each symbol position. In practice,
MaxNGram = 4 is a good choice where we can trade off node
congestion with size of the database (see also Figure 5 in the
experimental results section). For a string of length L and n-
grams of length N, we know that the number of n-grams is L-
N+1. Additionally, if there are A alternates at each symbol
position in the lattice, we get AN possibilities. In most
practical phoneme based systems like ours and [7], A ~ 2 is
sufficient. Therefore the index grows as: (L – 3) x 24 + (L – 2)
x 23 + (L-1) x 2 = 26L – 66 = O(L), i.e. linearly in L.

The query algorithm proceeds by finding all matches with
proper subsets of matching symbols. It is trivial to prove that
all sequences that match on an n-gram must also match on the
n-1 gram, i.e. matching prefixes. This allows us to “harvest”
all the nodes that stop matching at a given symbol position
and score these partial matches. Besides being easy to prove
correct, this design has the added benefit of being cache
friendly, because we start by caching in the biggest set of
matches (e.g. for 2-grams), and refine that by sub-setting, as
we proceed along the query sequence.

Figure 3: Hierarchical query algorithm

2.2. Multi-level N-gram index

In the multi-level index, at insertion time we index the
incoming symbol stream by creating n-grams where “n” is
fixed at a single configurable setting. This allows us to choose
any length of n-grams to work with, including the degenerate

Query(QuerySequence Q)
{
 B <- Empty set of (S, p)
 SQ <- Empty queue of n-grams (Source)
 DQ <- Empty queue of n-grams (Destination)
 for each position p in Q do
 Swap(SQ, DQ)
 Enqueue the 1-gram Qi on DQ
 for each n-gram ngi in SQ do
 if HashedTreeTraversal(ngi, Qi) exists
 then Add set difference: Ri-Rn to B
 else Add the set Ri to B
 end if
 end for
 end for
 Rank strings in B using SCORE
 return ranked B
}

Insert(InsertSequence S)
{
 SQ <- Empty queue of n-grams (Source)
 DQ <- Empty queue of n-grams (Destination)
 for each position p in S do
 Swap(SQ, DQ)
 Enqueue the 1-gram Si on DQ
 for each n-gram ngi in SQ do
 if HashedTreeTraversal(ngi, Si) exists
 then Add(S, p) to Rn
 else if Length(ngi.Si) < MaxNGrams
 then CreateNewNode(ngi.Si), Add(S, p)
 end if
 if Length(ngi.Si) < MaxNGrams
 then Enqueue the n+1 gram ngi.Si on DQ
 end for
 end for
}

1480

unigram or 1-gram case. Reducing n to unigrams improves
matching accuracy because it allows fragmented matches
down to the symbol level. However, using low n such as 1 or
2 slows down the scoring part of the query because the
scoring algorithm now has to piece together 1-grams or 2-
grams to find all the match regions. Thus, the multi-level
index allows us to fine tune for speed vs. expected
noise/desirable accuracy on the target platform, e.g. we only
use 1-grams on PC and server based systems.

Since n is fixed, the space requirement of the multi-level
index is much smaller than the hierarchical one, which
redundantly stores all the sub n-grams. Additionally, we don’t
need to perform hashed tree traversals because the n-gram
nodes may be directly looked up inside a contiguous address
space numbered 0..MaxNGrams-1.

2.2.1. Multi-level Insert and Query

Multi-level insertion is very simple. Since the “n” of each
n-gram is fixed at a single setting, we simply traverse the
lattice and sequentially store off each n-gram under its node
in the database, along with associated offset and duration
information for those symbols.

At query time we once again travel along the lattice of
symbols, and at each point we look up the n-gram node in the
database, gather all the matching regions from stored
sequences, and forward them to the scoring algorithm to piece
together and rank. If n is low, e.g. 2, then there is a lot of
collision to be expected in the database in each n-gram node,
and so we have implemented caching and MRU queuing of n-
gram nodes as optimizations. Additionally, when n is low,
scoring is expected to do a lot more work in piecing
everything together, but also be more accurate, because we
can then account for very fine grained fragmentation. These
observations are corroborated by the results presented in
section 4 (Table 1).

3. Noise robust scoring of query results
We now describe the scoring algorithm that we use to rank
the similarity between strings in the database, S, and a query
string Q. The scoring algorithm starts with matching n-grams
retrieved at query time, and pieces the n-grams together into
longer matching regions and computes a similarity score for
each string S. The same algorithm applies to both hierarchical
and multi-level indexes.

3.1. Problem Formulation

We define � as the symbol alphabet. Prior to reaching the
index for insertion or query, each string first passes through a
noisy channel, NC: ��������. Therefore, one way of looking
at our problem is that it is a 2-pass (one at insertion, second at
query) noisy channel indexing system. This abstraction
captures all forms of noise, e.g. wind, electrical, quantization,
model/data mismatch, intra-speaker variability, etc., and
allows us to formulate our algorithms by dealing with noise
under a unified framework. After inserting N strings, {S}, we
wish to query on a string Q.

We define a function, SCORE, that takes a pair of strings,
Si and Q, and returns a number that induces an ordering on
{S} such that Si < Sj implies SCORE (Q, Si) < SCORE (Q,
Sj).

SCORE has the following properties:

� Longer contiguous matching sequences will receive
higher scores than shorter matching sequences.

� Contiguous matching sequences should allow for some
small amount of mismatch between the query and
indexed sequences because of expected corruption of
each by the noisy channel, NC.

� A sub-string of Q occurring multiple times in Si will
receive a score for each occurrence. However, a sub-
string of Si occurring multiple times in Q will not
receive additional scores for each time it occurs.

� A score for matching symbols at any position is boosted
based on similarity of the time durations associated with
the matching symbols.

The unit of overlap is defined as a matching region. A
matching region is a pair of substrings, {SM, QM} (for string
match and query match), such that:

� The first symbol of SM matches the first symbol of QM;
� The last symbol of SM matches the last symbol of QM
� There must be an alignment between SM and QM, such

that there are at most, MaxSkips un-aligned symbols
between any two aligned symbols. For example, if
MaxSkips = 1, SM = abce and QM = abde, this
condition holds, but not if SM = abce and QM = ae.

3.2. Allowing match gaps in query result ranking

The similarity score can be computed by traversing through
the indexed database and finding the set of exact matched
lengths between each string S and Q. If each matched length
is il and the duration similarity is id , the similarity score is
simply the sum of all n matched regions:

 �
	

�	
n

i

dl iiSQSCORE
0

*)1(2),((2)

We choose exponential scoring because of its noise
resilience as it automatically filters out short matches in favor
of long ones, and also because it is cheap to compute with bit
shifts. We make a small modification to this straightforward
scoring system to account for the expected gaps in matching
regions caused by the noise channel NC. Rather than
requiring that a matched region should contain identical
symbols for the length of the match, the process of combining
smaller match regions (MR) into longer extended match
regions allows for some minor errors in alignment.

The SCORE algorithm presented in Figure 4 does the
necessary MR extensions and “hole-filling” operations that
we need to combat expected noisy matches. It combines all
substring matches between query string Q and candidate
strings S in the database. The SCORE algorithm tolerates
match deviations that are inside of an edit distance E.

4. Experimental results
Theoretical bounds calculated in Section 2.1 show that the
absolute size of the index in hierarchical indexing grows
linearly as the length of inserted sequences. In Figure 5 we
see that the growth rate of n-gram nodes is linear for synthetic
randomly generated data, but sub-linear for real data. The
sub-linear growth in real data is due to the fact that certain n-
grams, e.g. "z" followed by "b" are much less likely than "ih"

1481

followed by "ng". Time to query is linear with respect to
database size and also in the length of the query string.

Figure 4: SCORE algorithm

Small MaxNGram causes more collisions at each node
and increases processing burden at query/scoring time, but the
index grows at a slower rate and processing time decreases for
insertions. Thus, the value of MaxNGram can be selected to
trade-off query complexity with indexing complexity.

Figure 5: Growth rates with a) insertion length; b)
MaxNGrams parameter; and c) on real data

Table 1 presents the performance of the multi-level
indexing schemes on a “spoken notes” dataset of 15 users. For
each user, 100 unique remembrances are inserted. The
retrieval algorithm is tested using 150 queries from the same
user, where 30 unique queries are repeated 5 times each. To
ensure sufficient variability, the user repeats the same query
only after speaking several other intervening phrases. The
retrieval accuracy for each user is computed for the cases
where the exact match result is in the Top 1, Top 5 and Top
10 of the retrieved results. The overall accuracy is computed
as an average over all the users.

Table 1 illustrates the trade-off between retrieval accuracy
and complexity for various n-gram lengths in multi-level
indexing. As the n-gram length decreases, the retrieval
accuracy increases and the insertion complexity decreases.
However, the query complexity increases, since the scoring
algorithm needs to perform a lot of additional MR extensions.
Conversely, as the n-gram length increases, the query
complexity decreases. However, the retrieval accuracy

decreases since the scoring may miss smaller match regions,
and the insertion complexity increases due to the additional
effort in building larger n-gram indexes. For mobile and
embedded platforms, 2-grams seem to provide a reasonable
tradeoff between retrieval accuracy and complexity. For
platforms with greater computational resources, 1-grams may
be preferred. An important topic for future research is to
compare the retrieval performance of the low-complexity
Recite system against retrieval using LVCSR word and
phoneme based lattices on the network.

Table 1. Accuracy vs. complexity trade-off for
different Ngrams in multi-level indexing.

 Av. Accuracy
Av. Complexity

(ms)
Memory

bytes
Top
1%

Top
5%

Top
10% Insert Query

1-gram 72 87.5 92.3 1.18 261.37 261,636
2-gram 67.1 84.6 90.7 8.98 28.86 302,242
3-gram 62.3 80.9 87.9 56.12 16.97 384,174

5. Conclusions
We have presented two classes of noise robust n-gram symbol
indexes for “spoken notes” retrieval applications. We also
presented a query algorithm based on exponential scoring that
is robust to noise. Experimental results using hierarchical
indexing show that index size grows linearly with the length
of inserted sequences. We demonstrated that a particular
indexing scheme within the multi-level indexing class can be
selected to optimize the trade-off between retrieval accuracy
and insertion/query complexity. These indexing algorithms
can be tailored towards low-complexity speech retrieval
applications such as Microsoft Recite.

6. Acknowledgements
The authors wish to thank Kazuhito Koishida, Brendan
Meeder, Nikhul Patel, Stathis Papaefstathiou and Stewart
MacLeod for their help and support.

7. References
 [1] Welch, T.A., “A technique for high-performance data
compression”, Computer, Vol. 17, pp. 8-19.
[2] Burget, L., et. al., “Indexing and search methods for spoken
documents”, in Proc. Ninth International Conference on Text, Speech
and Dialogue (TSD), pp. 351-358, Berlin, 2006.
[3] Logan, B., Goddeau, D., Van Thong, J.M., “Real-world audio
indexing systems”, Proc. ICASSP, 2005.
[4] Singer, H., Umezaki, T., Itakura, F., “Low Bit Quantization of the
smoothed group delay spectrum for speech recognition”, pp. 761-
764, ICASSP 1990.
[5] Abberley, D., Cook, G., Renals, S., Robinson, T., “Retrieval of
broadcast news documents with the THISL system”, In Proceedings
of the 8th Text Retrieval Conference (TREC-8), 1999.
[6] Floratos, A., et. al., “Sequence homology detection through large
scale pattern discovery”, Proc. 3rd Annual International Conference
on Computational Molecular Biology, pp. 164-173, France, 1999.
 [7] Schwarz, P., Matejka, P., Cernocky, J., “Towards Lower Error
Rates in Phoneme Recognition”, Proc. 7th International Conference
Text Speech and Dialogue, 2004.

SCORE(M: {Candidate sub-strings from Si})
{
 for i = 0 to |M-1| do
 for j = i+1 to |M| do
 if Mi could extend Mj with edit dist E
 then
 Extend Mj to include Mi
 Remove Mi from M
 end if
 end for
 end for
 Sort M based on length (descending order)
 Score = 0
 for i = 0 to |M| do
 if Mi overlaps with scored region Mprev
 then
 MNew = Mi - Mprev
 Add MNew to M
 else Score(Q, S)+= 2length(Mi)-1
 end if
 end for
 return Score
}

1482

