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Abstract
The paper proposes a general version of a coupled Hidden
Markov/Bayesian Network model for performing phoneme
recognition on acoustic-articulatory data. The model uses
knowledge learned from the articulatory measurements, avail-
able for training, for phoneme recognition on the acoustic input.
After training on the articulatory data, the model is able to pre-
dict 71.5% of the articulatory state sequences using the acous-
tic input. Using optimized parameters, the proposed method
shows a slight improvement for two speakers over the baseline
phoneme recognition system which does not use articulatory
knowledge. However, the improvement is only statistically sig-
nificant for one of the speakers. While there is an improvement
in recognition accuracy for the vowels, diphthongs and to some
extent the semi-vowels, there is a decrease in accuracy for the
remaining phonemes.
Index Terms: phoneme recognition, articulatory measure-
ments, Coupled-HMM.

1. Introduction
The current Hidden Markov Model (HMM) based paradigm has
been very successful for Automatic Speech Recognition (ASR),
although predictions have shown that the current state-of-the-
art ASR systems cannot achieve human level performance even
if huge amounts of training data are used [1]. One way to im-
prove ASR is to incorporate speech production knowledge. This
can be done in various ways, surveyed by [2]. In this piece of
work, we will focus on automatic extraction of speech produc-
tion knowledge from measured data.

It has been established by several researchers [3, 4, 5], that
using articulatory measurement along with the acoustic features
improves phoneme recognition by 6% to 60%. Zlokarnik [3]
combined acoustic features and articulatory measurements from
Electromagnetic Articulography (EMA) coils in an HMM based
speech recognizer for German VCV sequences to get more than
60% relative error reduction. Wrench [4] conducted similar
experiments using a triphone HMM based speech recognizer
and 460 TIMIT sentences (MOCHA database [6]). The artic-
ulatory features were based on PCA projected Electropalato-
graph (EPG), EMA and Laryngograph measurements of the
lips, tongue, jaw, velum and larynx. When these features were
combined with MFCCs, a relative error reduction of 6% was
achieved. Stephenson et. al. [5] used the Wisconsin X-ray
Microbeam data to get 21% relative error reduction in isolated
word recognition using a Dynamic Bayesian Network (DBN)
which learned its discrete emitting distributions conditioned on
hidden acoustic and articulatory states. Similarly, Markov et.
al. [7] used an HMM/Bayesian Network hybrid to get a 20%
error reduction on a 3 speaker Japanese corpus. In all these

cases, using measured articulatory parameters amounts to us-
ing additional information for the recognition which explains
the large increase in the performance. This is however different
from using the knowledge of speech production for perform-
ing the recognition task, where only acoustic information is
made available . The idea is to convert the available articula-
tory measurements into knowledge that can be used to improve
the recognition when only acoustic observations are used.

Several approaches have been tried to gain this knowledge
from articulatory measurements. One method is to train a re-
gression system (acoustic-to-articulatory inversion) which can
predict the articulatory parameters from the acoustics. Instead
of using the measured articulatory parameters, one can use the
predicted ones during recognition. Zlokarnik [3] used Multi-
layer Perceptron regression to get 18% improvement for VCVs.
But when Wrench and Richmond [4] tried the same technique
on continuous sentences, the improvement was not significant
according to the authors. In these cases, the Neural Network
model was equivalent to the knowledge gained from the mea-
sured articulatory parameters. The number of parameters of
the new model included both the HMM as well as the learned
weights of the Neural Network.

The second approach to gaining this knowledge is to use the
articulatory measurements to bias the learning of the acoustic
model parameters in such a way that it incorporates knowledge
of speech production. This approach was used by Markov et. al.
[8, 7]. By using the HMM/BN hybrid, it was possible to learn
model parameters influenced by the articulatory measurements,
which represented the knowledge gained. With this a statisti-
cally significant error reduction of 6% to 10% was shown in
performing phoneme recognition on 2 out of 3 speakers, and
for the multi-speaker case.

The third approach that has been tried is by incorporating
knowledge about the dynamics of the process through the artic-
ulatory measurements. Stephenson et. al. [5] was able to incor-
porate knowledge of the dynamics as well as bias the learning of
the acoustic model parameters using DBNs along with a 4-fold
increase of the number of parameters. The relative reduction in
error was 20%.

In this work, we construct a Hidden-articulatory Markov
Model similar to [9], but propose a data-driven approach instead
of an expert system based approach. By doing this, we hope that
if pronunciation rules derived from theory are replaced by em-
pirical measurements integrated into the framework, the result-
ing models would be more accurate in representing the speech
production mechanism. This approach also relaxes the con-
straints imposed by HMM/BN hybrids or DBNs used in previ-
ous work in the sense that the articulatory measurements don’t
have to be quantized prior to training, and that the two modal-
ities, the articulatory measurements and the acoustic features,
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are coupled together. Secondly, the acoustic and articulatory
features are framed as a cross-modal regression which makes
it possible to estimate the articulatory measurements from the
acoustics. Thus the proposed model incorporates features of all
the previously proposed methods in a generalized solution. We
call this model a Cross-Modal Coupled Hidden Markov Model
(CMCHMM) which is the most generalized of previously pro-
posed model with complete couplings for an HMM or a DBN.

2. Theory
Theoretically, CMCHMM is the same as the Cartesian Product
HMM or also called the fully coupled HMM [10]. Consider
two Markov chains, one for each of the two modalities A and
B. Let j be a state in modality A and let l be a state in modality
B. Then let a joint cross-modal distribution bj,l(ot) connect
each state j in modality A with each state l in modality B. To
clarify, there is not a single emitting distribution for each single
state, but a single distribution for each possible pair of j and
l, see Fig. 1. The likelihood of the observation sequence O =
{O1O2...OT } and the two state sequences q for modality A and
r for modality B given the model is

P (O, q, r|λ) = πq1,r1

TY

t=2

aqt−1,rt−1,qt,rtbqt,rt(ot) (1)

where π is the probability of the occurrence of the state at
the first time instant (t = 1) and a is the coupled probability of
transition from a pair of states in the two modalities, qt−1 and
rt−1 at time t−1 to another pair of states qt and rt at time t−1.
Let OA be the acoustic observation sequence from modality A
and OB be the articulatory observation sequence from modal-
ity B. By letting O = [OA|OB ] during training, and O = OA

during testing, the state sequence r may be predicted by modal-
ity A alone, using information from the joint cross-modal out-
put distribution and coupled transition probabilities. In the case
where articulatory data is used for modality B and acoustics for
modality A, a fully coupled HMM would impose dynamic con-
straints in modality B when r is predicted by modality A. This
has shown to be a crucial property for cluster based articula-
tory inversion in a previous study [11]. Further, the use of two
Markov chains allows asynchronous state switching for the two
modalities, which may give an advantage compared to using
concatenated vectors OAB = [OA|OB ] with a standard HMM.
Any other information source besides the articulatory measure-
ments could also be incorporated through CMCHMMs. The
EM-algorithm for coupled HMM was derived as an extension
of the standard Baum-Welch algorithm for the standard HMM.
With N and M states per modality, a Viterbi search would have
the complexity O(T (NM)4).

3. Experiments
The experiments have been conducted using the simultaneously
recorded Acoustic-EMA data from the MOCHA database [6]
consisting of 460 TIMIT sentences spoken by two speakers (one
male and one female). The phonetic labels were converted to
SAMPA codes from the British English SpeechDat database,
giving a total number of 44 phonemes including silence and
breath. The acoustic features were the first 14 MFCCs (in-
cluding the 0’th component) computed at 10 ms frame rate.
Delta Mel Frequency Cepstral Coefficients (MFCC) were com-
puted using a Hamming window over 5 frames and added to

Figure 1: Inference graph of a fully coupled HMM or CM-
CHMM chain. Squares denotes emitting distributions, circles
denotes states and arrows denotes dependencies.

the acoustic features resulting in a total of 28 dimensions. The
14 articulatory channels consisted of the X- and Y-axis trajec-
tories of 7 EMA coils. These were low-pass filtered and down-
sampled to 100 Hz, in order to correspond to the acoustic frame
shift rate. The delta features for the articulatory measurements
were computed just like it was done for the MFCC. The articula-
tory features vectors were normalized to zero mean with a stan-
dard deviation of one and further reduced by PCA projection
such that 95% of the variance was retained. A five fold cross-
validation was performed where 80% of the female speaker’s
data was used for training and 20% of the data was used for
optimizing the parameters. The remaining cross-validation sets
were used to denote the final performance. For all the exper-
iments, the phonetic transcription used was the forced aligned
segmentation provided along with the MOCHA corpus.

Since the three state (N = 3) left-to-right topology is the
standard HMM used for speech recognition, it is also used for
the acoustic modality in this work. But for the articulatory
modality, one does not know the optimum topology. The cou-
pled HMM formed by choosing a left-to-right skip topology in
the articulatory modality is referred to as lr/skip CMCHMM.
The use of lr/skip CMCHMM forces the transitions in a par-
ticular order, but does not force each phoneme, segmented by
the Viterbi algorithm, to have a minimum duration of M ar-
ticulatory frames. However, the left-to-right constraint may be
too strict because of variations in pronunciation. A CMCHMM
formed by using an ergodic topology for the articulatory modal-
ity is referred to as lr/ergodic CMCHMM, where no constraint
is placed on the articulatory state transitions.

For training of the baselines of OA and OAB , one left-to-
right HMM with 3 states per monophone was used. The left-
to-right HMMs (OA and OAB) and left-to-right skip HMMs
(OB) were initialized using a flat state sequence as a start. The
ergodic HMMs for OB were initialized by segmenting the ar-
ticulatory feature space of each phoneme into clusters using the
k-means algorithm, where each cluster was assigned to a state.
These initializations was followed by 8 Viterbi iterations and 5
EM-iterations for parameter estimation. While the number of
Gaussians per state was varied between 1-32 for baselines and
1-24 for left-to-right skip HMMs, it was fixed to one for the
ergodic HMMs.

For each phoneme, the CMCHMMs was created by merg-
ing a baseline OA model and one of the left-to-right skip OB

or ergodic OB models. This was done by running a single it-
eration of the coupled EM-algorithm, where the emitting dis-
tributions model the joint feature space, OAB . Thus, acoustic
and articulatory knowledge was incorporated by the added cou-
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Figure 2: Phoneme recognition performance for the female us-
ing lr/skip CMCHMM where only acoustics is used for testing.
Each CMCHMM has 3 acoustic states and 3,4 or 5 articulatory
states.
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Figure 3: Phoneme recognition performance for the female us-
ing lr/ergodic CMCHMMs where only acoustics is used for test-
ing. Each CMCHMM has 3 acoustic states and 3,4 or 6 articu-
latory states.

plings. A single Viterbi search with forced transitions between
the forced aligned phonetic segments was performed in order to
collect biphone statistics for merging the phonetic CMCHMMs
into a large CMCHMM. Any Gaussian Mixture Model (GMM)
which were assigned less sample points than the number of di-
mensions were removed. Diagonal covariances were used to
model all GMMs. It should be noted that the lr/ergodic vari-
ant with a single Gaussian per state is similar to the HMM/BN
hybrid suggested in [7], except for the adaptive assignment of
the number Gaussians and the transition information which are
additional in our model.

Parameter optimization was conducted by varying the num-
ber of states between 3 and 5 for the left-to-right skip HMMs
and between 3 and 6 for the ergodic HMMs. We compared re-
sults by changing the number of Gaussians per state and testing
the CMCHMMs using only OA against using both OA as well
as OAB for test with a baseline HMM.

4. Results and Discussion
From Fig. 2 and Fig. 3 we note a small (around 2% and 3%
drop in error rate respectively) improvement over the baseline
for the CMCHMMs using lr/skip and lr/ergodic topology. The
CMCHMM performs much better than the baseline HMM for a

low number of Gaussians per state, but the improvement is not
statistically significant for higher number of Gaussians. It can
be seen that the baseline HMM performance, when measure-
ments from both the modalities are available, is much better
than the CMCHMM with only the acoustics for testing. How-
ever, these results reflect the direction of the improvement and it
seems to be similar to the results obtained by previous studies.
The coupled HMMs (HAMMs) derived from expert knowledge
had shown worse performance than standard baseline systems
[9], while Markov et.al. [7] had shown 6-10% error reduction
as compared to a baseline system of 12 Gaussians per state on a
different database.

When the number of parameters are increased further, the
performance converges for a larger number of parameters as
shown in Fig. 2 and Fig. 3. When the accuracy is plotted
against the number of free parameters for the two most promis-
ing configurations of the CMCHMM, as shown in Fig. 4, then
we see that the performance of the lr/ergodic CMCHMM is ex-
actly the same as the baseline, while that of the lr/skip CM-
CHMM is lower than the baseline for the same number of free
parameters. This questions the assumption that the slight im-
provement in the accuracy is because of the knowledge gained,
which instead may be because of an increase in the number of
parameters.
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Figure 4: Phoneme recognition performance as against number
of free parameters for CMCHMMs using different topologies
where only acoustics is used for testing. Each CMCHMM has 3
acoustic states and 3 articulatory states.

Table 1: Full evaluation for the best baseline (26 Gaussians)
and the best lr/ergodic CMCHMM (12 Gaussians/3 states).

Speaker Type Accuracy
Female HMM 58.41%
Female CMCHMM 58.65%
Male HMM 58.97%
Male CMCHMM 60.13%

An evaluation of the remaining 4 cross-validation sets with
the best baseline HMM and the best CMCHMM for both the
female and male speakers is shown in Table 1. The baseline
results are lower than the results obtained by [4] who obtained
between 63 to 65% for the same database. This was expected,
since [4] used a triphone model with tied states with an opti-
mized feature set. These is a small improvement for the pro-
posed method, but a Wilcoxon two-sided signed rank test gives
p = 0.98 for the female speaker and p = 0.02 for the male
speaker. Thus, the improvement is considered statistically sig-
nificant only for the male speaker.
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Table 2: Evaluation for predicting the Articulatory states and
corresponding improvement in recognition accuracy when the
articulatory data is unavailable as against when it is available.
”Prior” refers to the accuracy gained by choosing the state with
the highest self transition probability for each CMCHMM.
Spk Type Vowels Stops Fricatives Semivowels Diphthongs

Prior of Arti.
F State Seq. (%) 55 32 28 45 43

Acc. of Arti.
F State Seq. (%) 82 54 58 75 66

Improvement in
F Recog. Acc. (%) +1.3 -2.8 -0.45 +0.2 +1.3

Prior of Arti.
M State Seq. (%) 37 29 36 33 30

Acc. of Arti.
M State Seq. (%) 76 74 76 74 80

Improvement in
M Recog. Acc. (%) +2.8 +0.6 -1.0 +1.3 +2.4

In order to see whether the proposed model has gained
speech production knowledge from the articulatory measure-
ment data, we make a comparison between the articulatory state
sequence obtained when only acoustic data is available with the
state sequence obtained when both the modalities are available.
To isolate any errors in state prediction performance from sec-
ondary errors, such as phoneme recognition accuracy, we chose
to use the phonetic transcriptions obtained through forced align-
ment. This was done by scoring each transcribed phonetic seg-
ment against the lr/ergodic CMCHMM trained for that partic-
ular phoneme, using a full cross-validation of 4 by 1 jackknife
evaluation.

The results are shown in Table 2. Since a lr/ergodic CM-
CHMM is used, a random guess would yield 33% accuracy for 3
articulatory states. However, some states may be more common
than others which is reflected by differences in self-transition
probabilities. Therefore, we also provide a reference by dis-
playing the accuracy obtained by selecting the most likely state,
which gives a perspective about how well the CMCHMMs per-
form in predicting the articulatory states. Note that if 100%
accuracy was achieved, then the phoneme recognition perfor-
mance would have been as good as when articulatory data is
used. We can clearly see that for both speakers the agreement
of the state predictions are good for vowels, diphthongs and
semivowels. The prediction of the states in the stop consonants
and fricatives are poor for the female. The over all accuracy
over all phonemes is 67.0% for the female and 76% for the
male. This error in prediction may be the cause of the loss of
accuracy as compared to when both the modalities are available.

The the relative gain (in comparison with the baseline) in
accuracy, weighted by the number of occurrences of phonemic
classes, is also presented in Table 2. We can see that there
is improvement in recognition accuracy for the vowels, diph-
thongs and to some extent the semivowels, while the accuracy
for the remaining phoneme types drops for the proposed model.
While there is a clear correspondence between articulatory state
prediction accuracy and phoneme recognition accuracy for the
female, there is no such correspondence for the male.

5. Conclusion
A model which generalizes most of the previously proposed
articulatory-knowledge learning algorithms has been presented
in this article. This model, as expected, shows a slight improve-

ment over the baseline HMM when the number of parameters
are small. However one can see that for the same number of free
parameters, there is little to choose from between the baseline
HMM, trained using only the acoustics and the proposed CM-
CHMM, trained using both the articulatory and acoustic data.
It is not known whether this behavior is observed, because of
the model we proposed, in particular, or is a common property
of all the previously proposed models. However, it was shown
that there is an improvement in recognition accuracy for vow-
els, diphthongs and to some extent semivowels, while the accu-
racy for the remaining phoneme types dropped. The proposed
model is able to predict the articulatory states with 67.0% ac-
curacy for the female speaker and 76% accuracy for the male
speaker when only acoustics are available. This makes us draw
the conclusion that articulatory knowledge has been incorpo-
rated to some extent, but it is unclear whether it is good enough
to improve speech recognition.
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