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Abstract

In this paper, we describe the use of either words or morphemes
as lexical modeling units and the use of either graphemes or
phonemes as phonetic modeling units for Arabic automatic speech
recognition (ASR). We designed four Arabic ASR systems: two
word-based systems and two morpheme-based systems. Experi-
mental results using these four systems show that they have com-
parable state-of-the-art performance individually, but the more so-
phisticated morpheme-based system tends to be the best. However,
they seem to complement each other quite well within the ROVER
system combination framework to produce substantially-improved
combined results.

Index Terms: Arabic speech recognition, morphological decom-
position, lexical unit, phonetic unit, system combination

1. Introduction

Arabic presents two primary difficulties to automatic speech
recognition (ASR) systems, both due to the Arabic writing system.
The first difficulty is the morphological complexity that arises from
the attachment of affixes, which renders recognition vocabular-
ies very large if one wants to minimize out-of-vocabulary (OOV)
words. For example, a 65K Arabic vocabulary typically has an
OOV rate of 5%, compared to 0.5% for the same size English
vocabulary. The second difficulty arises due to the fact that the
short vowels are typically not written. Both difficulties are par-
tially overcome by the use of automatic morphological analyzers,
which also produce vocalizations, but the resulting analysis and
vocalization can be errorful at times.

In this paper, we describe the use of either words or morphemes
as lexical units and the use of either graphemes or phonemes as
phonetic units in Arabic ASR to handle the two key problems
mentioned above. Specifically, we designed four Arabic ASR sys-
tems: two word-based systems and two morpheme-based systems.
In the first word-based system, each word is modeled by one or
more sequences of phonemes of its phonetic pronunciations. In
the second word-based system, each word is modeled by exactly
one sequence of letters of its spelling. The third and fourth systems
use morphemes as recognition units. Morphemes are determined
by either a simple morphological decomposition using a small set
of affixes and a few rules or by an elaborate linguistically-driven
morphological analyzer. Each morpheme is modeled by sequences
of phonemes of its pronunciations derived from the corresponding
word’s pronunciations during the decomposition process.

Experimental results using these four systems (developed for the
GALE Phase 3 evaluation) show that they have comparable state-
of-the-art performance individually. However, they all seem to
complement each other quite well such that the combination of
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the four systems using ROVER provides substantial improvement
in performance when compared to each single system.

2. System Description

At the core of each ASR system is the Byblos multi-pass recog-
nizer. Various acoustic and language models at different levels of
sophistication are deployed at different passes and/or stages.

2.1. Recognizer

The Byblos multi-pass recognizer [1] first performs a fast match
of the data to produce scores for numerous word endings using a
coarse state-tied-mixture (STM) acoustic model (AM) and a bi-
gram language model (LM). Next, a state-clustered tied-mixture
(SCTM) AM and an approximate trigram LM are used to gener-
ate lattices. Lattices are then re-scored using a cross-word SCTM
AM and a 4-gram LM. The best path of the re-scored lattice is the
recognition result. In other words, the decoding process is a three-
step sequence (fast-match, lattice generation, and lattice rescoring)
with finer-detailed models being used on narrower search space at
later steps [2].

The decoding process is repeated three times. First, speaker-
independent (SI) acoustic models are used in the decoding to gen-
erate hypotheses for unsupervised adaptation. Then, the decod-
ing is repeated but with speaker-adaptively-trained (SAT) acoustic
models that have been adapted to the hypotheses generated in the
first stage. The last decoding is similar to the second but acoustic
models are adapted to the second stage’s hypotheses using a larger
number of regression classes.

2.2. Acoustic Model Training

The typical procedure for training acoustic models at BBN can be
logically grouped into these four sequential stages.

Front-end Processing: 14-dimensional Perceptual Linear Predic-
tive [3] cepstral coefficients are extracted from the overlapping
frames of audio data with a frame rate of 10ms. Cepstral mean
subtraction is applied for normalization. The normalized energy
is used as the 15" component. Nine successive 15-component
frames centered at the current frame are concatenated and then
reduced to a 60-dimensional feature vector using Linear Discrimi-
nant Analysis (LDA) and decorrelated using Maximum Likelihood
Linear Transformation (MLLT) [4]. The dimension reduction is
applied differently for SI and SAT models.

ML-SI Training: The SI AMs are trained using the Maximum-
Likelihood (ML) criterion. Feature dimension reduction is done
via global LDA and MLLT transformations estimated from and
applied to all training data. These models are to be used in the SI
decoding stage.
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ML-SAT Training: The SAT AMs are then trained using also
the ML criterion. Each 15-dimensional feature vector is trans-
formed using a speaker-cluster-dependent Constrained Maximum
Likelihood Linear Regression (CMLLR) transform [5] before the
concatenation of nine successive frames for dimension reduction.
Both LDA and MLLT transformations are speaker-cluster-specific
at this stage. The resulting 60-dimensional feature vectors are fur-
ther transformed using new CMLLR transformations. These mod-
els are used only in the adapted decoding stages.

MPFE Training: In the last stage of acoustic model training, all
training data is decoded using the ML models to generate lattices.
Then a new set of AMs, both SI and SAT, are estimated using these
lattices under the Minimum Phoneme-Frame Error criterion [6].

The total amount of acoustic training data used in this effort is
about 1400 hours selected through light supervision [7] of all data
available to the GALE community. Specifically, the data consist
of the following corpora: BBN-FBIS (43hr), TDT4 (67hr), Iraqi
Dialect (50hr), GALE Yearl (144hr), Phase2 (603hr), and Phase3
(526hr).

2.3. Language Model Training

The language models were estimated through interpolation of sev-
eral sub N-Gram models trained on disjoint subsets of the 1.7-
billion words of Arabic text data available to the GALE commu-
nity as of May 2008. Each individual sub N-Gram model was
trained using the modified Kneser-Ney smoothing technique.

3. Implementation

Arabic Text Normalization: Due to writing conventions in Ara-
bic, sometimes the same word has different written forms. This is
especially true for words that start with the letter “hamza” (corre-
sponding to the glotal stop). So, for consistency in lexical repre-
sentation for ASR, we map all different forms of “hamza” (“<”,
“>”, and “|” using Buckwalter transliteration scheme) at the be-
ginning of the word, or after the common Arabic prefixes “Al” and
“w”, to “alif” (“A”). Also, for certain frequent words, we map the
“alif maksura” (“Y”) at the end of the word to “yeh” (“y”) or vice
versa. However, for scoring of ASR output, all forms of “hamza”
are equated to “alif” without the restriction above.

Master Phonetic Dictionary: As described in [8], [9], and [10],
we constructed phonetic dictionaries for Arabic by using the Buck-
walter morphological analyzer [11] and manually-vocalized cor-
pora. Minor changes to this procedure include the addition of extra
affixes used in major Arabic dialects to the list of Modern Standard
Arabic (MSA) affixes used in the Buckwalter analyzer. We also
added all vocalizations found in the manually-vocalized corpora
(LDC’s Arabic TreeBanks, LDC’s Iraqi dialect lexicon, and the
45-hour BBN-FBIS corpus). As a result, our Arabic master pho-
netic dictionary, as of now, consists of about 1.2 million words,
each with about 3.76 pronunciations on average. This is the mas-
ter dictionary from which we derive phonetic pronunciations for all
phonetic word-based and morpheme-based Arabic ASR systems.

3.1. Phonetic System (P)

The design of our word-based phonetic system (P) is a straight-
forward implementation of a typical ASR system. The recognition
units are Arabic words and each word is modeled by one or more
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sequences of phonemes of its pronunciation(s). The largest AM
(i.e. the cross-word SCTM model) has about 220K cross-word
quinphone states sharing 7K sets of Gaussians (or codebooks).
Note that we use two-level Gaussian mixture models with several
different states having separate sets of mixture weights but sharing
the same set of Gaussians (or codebooks, as described in details in
[2]). The total number of Gaussians in this model is about 900K.
The exact values for all four systems can be found in Table 1.

[ Sys. | #states | #codebooks | #Gaussians |

P 220694 6882 889146
G 212066 6580 867707
M1 | 222506 6829 883117
M2 | 220561 6854 885518

Table 1: AM comparison: all four systems use about the same
number of model parameters.

The recognition vocabulary used in this phonetic system consists
of 390K words. Each word has 4.03 pronunciations on average.
This is a subset of the 490K words that occur at least 30 times in the
language model training data or at least 3 times in the transcripts of
the acoustic training data. That means 100K words in the list of the
490K most frequent words do not exist in our 1.2M-word master
dictionary because they could not be analyzed by the Buckwalter
analyzer and they do not occur in the manually-vocalized corpora.
This system’s language models consists of 137M trigrams (pruned
based on entropy) used for decoding and 585M (unpruned) four-
grams used for lattice rescoring. The OOV rate of this vocabulary
and the size of the LMs of this system are compared against those
of other systems in Tables 2 and 3.

[ Sys. [ vocab. [ pron. | #3-grams [ #4-grams |
P 390K 4.03 136,767,904 | 585,331,357
G 490K 1.00 | 140,915,143 | 617,448,176
Ml 289K 4.43 137,586,807 | 565,474,893
M2 284K 3.69 | 142,068,884 | 563,803,750

Table 2: LM comparison: all four systems have about the same
number of n-grams even though the size of the morpheme vocab-
ularies is substantially smaller than that of the word vocabularies.

3.2. Graphemic System (G)

The word-based graphemic system (G) is similar to the phonetic
system except that it doesn’t use phonetic pronunciations and it
has a much larger recognition vocabulary. The recognition units
are also Arabic words but each word is modeled by exactly one se-
quence of letters of its spelling. The largest AM of this system has
about 210K states sharing 7K sets of Gaussians for a total of about
900K Gaussians (as shown in row G of Table 1). Since this sys-
tem doesn’t depend on the real phonetic dictionary, its recognition
vocabulary uses all 490K most frequent words. Its LM consists of
140M (pruned) trigrams and 617M (unpruned) four-grams.

3.3. Morphemic System 1 (M1)

The morphemic system 1 (M1) is a morpheme-based phonetic sys-
tem. Morphemes are determined by a simple morphological de-
composition of the words without their context using a small set



of affixes and a few rules. More details on various morphological
decomposition strategies and their effect to ASR performance for
morphemic systems developed in the past can be found in [9]. In
the current M1 system, the decomposition process uses 12 prefixes
and 34 suffixes. The prefixes are: Al, bAl fAl, kAL Il, wAL b, f, k, |,
s, w, and the suffixes are: An, h, hA, hm, hmA, hn, k, km, kn, nA, ny,
t th, thA, thm, thmA, thn, tk, thm, tm, tnA, tny, tynd, wA, wh, whA,
whm, wk, wkm, wn, wnA, wny, y, yn. The process also utilizes a
list of 128K most frequent decomposable words that should not be
decomposed (hereafter referred to as a blacklist) since it has been
shown that this really improved recognition performance. For a
candidate word to be decomposed, it has to satisfy the following
five conditions: (1) it doesn’t belong to the blacklist, (2) it consists
of at least one of the pre-determined affixes, (3) its decomposed
affixes’ pronunciations match the pre-determined pronunciations,
(4) its stem must exist in the master dictionary, and (5) its stem
must be at least two letters long.

As shown in Table 1, the acoustic models of this system were
designed to have about the same number of system parameters
as all other systems. However, the recognition units, i.e. the
morphemes, in this system consist of 289K morphemes obtained
through the decomposition of all 490K most frequent words, in-
cluding its blacklist, and all words occurring in the transcripts of
the acoustic training data. On average, each morpheme has about
4.43 pronunciations. The LM also has about the same number of
n-grams used in the other systems, as shown in Table 2.

3.4. Morphemic System 2 (M2)

The morphemic system 2 (M2) is another morpheme-based pho-
netic system, but the morphemes in this case were determined by
a more sophisticated decomposition process. Briefly, the process
consists of two steps. First, we use Sakhr’s Arabic morphologi-
cal analyzer' to decompose all AM and LM training data (of about
two billion words). Each word, if occurring more than once, can be
decomposed into different sequences of morphemes depending on
its different contexts. Note that each word instance is decomposed
into exactly one sequence of morphemes of the form [prefix] +
stem + [suffix], where either the prefix or the suffix or both can be
missing. Then, we collect all the decomposed forms of the 490K
most frequent words and all words occurring in the acoustic train-
ing data and pass them through the final decomposition process.
Similar to the construction of the recognition units in system M1,
we also utilize a blacklist of the 128K most frequent decompos-
able words. The decomposable words are finally decomposed as
follows:

if the word is in the blacklist, keep unchanged;

else if no prefix, decompose into stem and suffix;

else if no suffix, decompose into prefix and stem;

else if prefix+tstem is in the blacklist, decompose into
prefix+stem and suffix;

e clse if stem+suffix is in the blacklist, decompose into

prefix and stem+suffix;
e clse decompose into prefix, stem, and suffix.

The authors would like to thank Sakhr for the use of their proprietary
Arabic morphological analysis software for this study. Sakhr is a member
of the BBN-led GALE AGILE team.
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This decomposition process produced about 284K morphemes to
be used in the recognition vocabulary in this system. On average,
each morpheme has about 3.69 pronunciations. Both the AMs and
LMs of this system have about the same sizes compared to those
of other systems, as shown in Tables 1 and 2. A full description of
this system and a comparison to the M1 morphemic system can be
found in [10].

4. Experimental Results

Development Test Sets: To support the research and development
of these four systems, we used five Arabic test sets. The first two
test sets, at6 and ad6, were constructed at BBN at the start of the
GALE program. Each is about six hours long, and uses Arabic
broadcast programs aired in November 2005 and January 2006.
These two test sets contain long segments of broadcast stretches
of about ten to twenty minutes long. The remaining three test sets
are development or evaluation test sets designed by LDC/NIST to
be used by all GALE participants. Each of these three test sets
is about three hours long. They consist of Arabic broadcast pro-
grams aired in November 2006 (dev07), December 2006 (eval07),
and May 2007 (dev08). These three test sets contain only short
snippets ranging from two to four minutes long (to facilitate the
research and evaluation of the down-stream machine translation
task of the GALE program). Each test set includes both broadcast
news and broadcast conversations with almost equal amounts.

4.1. OOV Comparison

As shown in Table 3, both word-based systems (P and G) have
pretty high OOV rate for all the test sets even though they use
rather large vocabulary (400-500K words). Except for dev08, the
OOV rates are 3% or 4% for all other test sets. The graphemic
system (QG) has a bit lower OOV rate since it uses a larger vocab-
ulary. In contrast to using words as recognition units, both mor-
phemic systems (M1 and M2) have much lower OOV rate even
though their vocabulary sizes are substantially smaller. It is inter-
esting to point out that the vocabulary of the M2 system has similar
OOV rates across all test sets. Note that we scaled the morpheme
OOV rate of the morpheme vocabulary by the decomposition rate
(number of morphemes after decomposition divided by number of
words before decomposition) to make it comparable to the stan-
dard word OOV rate.

[ Sys. [ #units [ at6 | ad6 [ dev07 | eval07 | dev08 |

P 390K | 4.02 | 3.39 | 4.36 2.88 1.44
G 490K | 343 | 2.86 | 3.78 2.07 0.84
Ml 280K | 1.31 | 1.20 | 2.82 1.89 0.94
M2 | 284K | 0.66 | 0.68 | 0.81 0.66 0.56

Table 3: OOV rate comparison: morpheme-based vocabularies
have better coverage than word-based vocabularies for Arabic.

4.2. Individual Results

Table 4 shows the WER of the four systems on the five test sets.
Overall, systems using morphemes as recognition units perform
better than systems using words as recognition units. Using mor-
phemes derived from the linguistically-driven approach in M2 pro-
duces the lowest WER among the four systems. Between the two
morphemic systems, M2 tends to be more robust in terms of both



OOV rate and WER. M2 is clearly the best system on the two
BBN-constructed test sets (at6 and ad6). Between the two word-
based systems, the phonetic system is better than the graphemic
system for the three GALE test sets (dev07, eval07, and dev08).
However, the graphemic system is better than the phonetic system
on the two BBN test sets (at6, and ad6). It’s important to point out
that the two BBN test sets are much more difficult than the three
LDC/NIST test sets based on WER.

These four sets of results seem to correlate well with the complex-
ity of the design of an Arabic ASR system. The simplest system
has the highest WER (G) and the most sophisticated system (M2)
has the lowest WER among the four systems. This finding would
probably provide sufficient information for a designer of an Ara-
bic ASR system to decide the type of recognition units to use to
achieve the best trade-off required by his/her application. For ex-
ample, even though it has the worst performance among the four
systems, the word-based graphemic approach is clearly the sim-
plest and easiest to implement, based on the fact that it doesn’t
require a phonetic dictionary. Furthermore, each word would have
exactly only one pronunciation and, consequently, the recognizer
would run faster in comparison to phonetic systems that have four
pronunciations per word on average. However, if accuracy is the
top requirement, the designer must be prepared to construct a pho-
netic dictionary with good quality and coverage. Also, a decent
morphological analyzer that can decompose words within context
into morphemes is required.

[ Sys. | at6 [ ad6 [ dev07 [ eval07 | dev08 |

P 18.8 | 16.9 | 10.6 11.6 12.1
G 185 | 16.7 | 11.6 12.2 12.5
M1 18.1 | 17.1 10.3 11.1 11.6
M2 | 176 | 163 | 10.2 10.8 11.8

Table 4: Individual system results: the simplest system (G) has
the overall highest WER and the most sophisticated system (M2)
has the lowest WER.

4.3. System Combination Results

In addition to the scientific curiosity to search for the optimal
recognition unit for Arabic ASR, another goal of this work is to
have diverse but complementary systems to be used within the
ROVER system combination framework. As shown in Table 5,
the combination of all four systems (P+G+M1+M2) provides the
lowest WER for all test sets. The relative reduction in WER for all
five test sets in comparison the the best system (M2) is from five to
ten percent. Various combinations of two or three systems, starting
with the phonetic system (P), are shown in the top two blocks of
Table 5. Generally, combining two systems produces about zero to
three percent relative reduction in WER. Combining three systems
increases the relative WER reduction further to about three to six
percent.

5. Conclusion

We have described two possible types of lexical recognition units,
either words or morphemes, and the use of either graphemes or
phonemes as phonetic modeling units for Arabic automatic speech
recognition. The study involves implementation of four different
Arabic ASR systems. The results of these four systems show that
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[ ROVER [ at6 [ ad6 | dev07 [ eval07 [ dev08 ]
P+G 174 | 15.8 10.5 10.9 11.6
P+M1 17.7 | 164 10.1 10.9 11.4
P+M2 173 | 159 10.2 10.7 11.5
P+G+M1 169 | 15.6 9.9 10.6 11.0
P+G+M2 16.7 | 154 9.8 104 11.0
P+M1+M2 17.2 | 158 9.8 10.5 11.1

[PrGIMI+M2 [ 166 [ 153 | 97 | 103 | 108 |

Table 5: Various system combination results: combining two sys-
tems (P+*) produces 0-3% in WER reduction relative the best sin-
gle system (M2); combining three systems (P+*+*), 3-6%; and the
lowest WER obtained by combing all four systems.

they all have comparable state-of-the-art performance. They also
show a good correlation to the complexity of the design of an Ara-
bic ASR system: the simplest system, the word-based graphemic
system, has the highest WER and the most sophisticated system,
the linguistically-driven morphemic system, has the lowest WER.
In addition, even though all four systems use the same underlying
ASR technology, the use of different recognition units seem to be
quite complementary to each other such that the combination of the
four systems produces substantially-improved combined results.
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