
Very Large Vocabulary Voice Dictation for Mobile Devices

Jan Nouza, Petr Cerva, Jindrich Zdansky

SpeechLab, Institute of Information Technology and Electronics
Technical University of Liberec, 461 17 Liberec, Czech Republic

{jan.nouza, petr.cerva, jindrich.zdansky,}@tul.cz

Abstract
This paper deals with optimization techniques that can make
very large vocabulary voice dictation applications deployable
on recent mobile devices. We focus namely on optimization of
signal parameterization (frame rate, FFT calculation, fixed-
point representation) and on efficient pruning techniques
employed on the state and Gaussian mixture level. We
demonstrate the applicability of the proposed techniques on
the practical design of an embedded 255K-word discrete
dictation program developed for Czech. Its real performance is
comparable to a client-server version of the fluent dictation
program implemented on the same mobile device.
Index Terms: large vocabulary dictation, mobile device

1. Introduction
Voice-controlled applications, particularly dictation programs,
have already proven their viability on classic PCs, where the
efficiency of voice input starts to compete with traditional
keyboard typing. The main advantage of a modern PC is that
it offers a combination of high computation power and large
memory, i.e. the two key parameters required for a practical
implementation of complex speech recognition procedures.

To seek for new challenges, many speech researchers are
shifting their attention from desktop PCs to mobile devices,
such as PDAs or smart phones. The motivation is obvious.
These miniature devices offer very poor (and uncomfortable)
possibilities for entering text data. Their keyboards are small,
usually display only a subset of all available characters, often
require a special stylus, and last but not least, stylus typing is
rather slow and suffers from frequent errors. Therefore, voice
input implemented into these devices would be appreciated
even more than in case of standard PCs.

Unfortunately, it is not easy to meet all the requirements
that most mobile device users and developers expect from
speech technology [1, 2]. The reason is that the desktop and
handheld devices differ significantly in their technical
parameters, as it is summarized in Table 1. In general, a recent
mobile device (MD) operates with a CPU that is at least 5
times slower than that in a PC. Also the operational memory is
5 to 10 times smaller. What most MDs lack, is a Floating
Point Unit (FPU), a component that is essential for complex
speech processing algorithms. Moreover, there is a significant
difference in voice signal quality. While on a PC we can use a
high quality close-talk microphone supported by a standard
sound card, in case of a mobile device we must use either the
embedded miniature microphone or an external hands-free set.
Unfortunately, none of these two options provide signal
quality that is as good as that on a PC. (For comparison, see
section 4.) Last but not least, we should mention also the
problem of power supply. Batteries used in MDs have very
limited capacity and this fact must be taken into account when
developing programs that require CPU intensive operation.

Table 1. Parameters of desktop and mobile devices.

Parameters Desktop PC Mobile device
CPU speed 2 – 3 GHz 0.4 – 0.6 GHz
Memory 1 – 2 GB 0.1 – 0.25 GB
FPU included missing
Voice channel quality high lower
Power supply capacity not so critical very limited

Technical limitations of MDs can be overcome in several
ways. An often used approach is to utilize distributed
computing and let the CPU intensive procedures run on a
remote server as shown, for example, in [3]. The main
drawback of this solution is that during dictation, the MD must
be connected to the server via one of the available wireless
networks (e.g. WiFi, GPRS, etc). Another approach consists in
the development of a special recognizer that can operate
within the limits of MDs. This can be done either by porting
and optimizing existing engines (e.g. pocket versions of Janus
[4] or Sphinx [5]) or by designing mobile devices and
platforms that already support speech recognition, like it has
been done by Nokia [6, 7]. Unfortunately, even the latest
products of this type are capable of managing vocabularies
whose size is restricted to several thousands (at maximum tens
of thousands) of words. Hence, they can be deployed in
specific tasks only. Yet, this approach becomes totally
unusable in inflected languages, where even domain restricted
tasks require tens to hundreds of thousands words.

2. Motivation and goals
In this paper, we describe our solution to the very-large-
vocabulary voice dictation problem. The task we solved was
challenging: build a standalone speech recognizer for Czech
that would be practically deployable on recent PDAs and
smart mobile phones. We had to find a way to manage
vocabularies with 250K+ words and make voice input faster
than the typing with a stylus (supported by the T9). Our
approach employs a discrete speech recognition engine
optimized for speed, memory usage and power consumption.
Using the touch screen for disambiguation and correction of
voice input, we almost eliminate the use of the stylus [8].
 The engine has been designed as language independent,
though we had in mind Czech users as the first target group.
Czech is an inflected language with more than one million
distinct word-forms. If we want to ensure practically
applicable dictation of common texts, the OOV rate must not
be higher than 1 %. Our previous study [9] showed that in that
case the lexicon had to contain at least 250K words.

To make the development fast and efficient, we wanted to
re-use our previously created codes and modules, all written
for the Microsoft Windows platform. Its ‘pocket’ version, the
Windows Mobile (WM), has become quite popular among the
producers of PDAs and smart phones (e.g. HP, Samsung,

Copyright © 2009 ISCA 6-10 September, Brighton UK995

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

9-
29

5

HTC, and others) as well as among MD users, recently.
Therefore, we decided to port our engine to the WM OS.

The other practical requirements on the dictation program
can be briefly summarized as follows: latency shorter than 0.5
seconds, speaker independent (but gender specific) operation,
optional speaker adaptation, and on-line lexicon modification
(a possibility to add new words during dictation).

For evaluation and comparison purposes we have
developed also a client-server based fluent speech recognizer
running on the same type of the MDs. We briefly describe its
features in section 4.

3. Standalone dictation program
For the development of the dictation program we could use
modules that had been already designed and deployed in the
software called MyDictate [10]. The software is aimed at
motor-handicapped users who cannot use keyboard and
mouse. All actions, i.e. dictated words as well as correcting,
editing and formatting commands are controlled by voice,
using a vocabulary containing about 550K words. The words
and commands have to be pronounced in isolated way with a
short pause (> 0.5 s) between them. This solution proved to be
both acceptable as well as robust for the target user group,
which is documented by almost 100 installations distributed so
far. A typical WER value is about 9 % in the speaker
independent mode, or 6 % in the speaker adapted mode.

The first idea was to port this software to MDs equipped
with StrongARM family of processors and Windows Mobile
6.1 OS. This initial attempt failed because: a) the 550K-word
vocabulary and its language model were too large for MD’s
operation memory, and b) even if the vocabulary size was
reduced to a half, the recognition time was extremely long
(almost 30 seconds per word). We realized that for successful
porting we had to analyze and consequently optimize namely
the following settings, parameters, and procedures:

� signal sampling rate and frame rate,
� FFT and MFCC calculation,
� acoustic model representation,
� likelihood computation and efficient decoding scheme.

3.1. Baseline recognition engine
To allow for later performance comparison with the optimized
versions, we briefly summarize the settings of the original
engine: signal sampling rate 16 kHz, frame window length 25
ms (400 samples), window shift 10 ms (160 samples), 512-
point FFT, 39 MFCC parameters, 41 phones + 7 noises, 3-
state context independent HMMs, 96 gaussians per each state,
tree-structure lexicon of 255K words, unigram LM. It should
be noted that the mentioned lexicon size and the LM in form
of unigrams were chosen here to make the baseline system
comparable to what can be fitted to the latest MD processors.
The baseline engine was implemented in C language using 32-
bit float types for the variables, like features, likelihoods, etc.

To analyze the impact of various settings and alternative
implementations on speed and recognition score, we created a
development set of 2400 words recorded by 4 persons on 2
MD types. The WER for the baseline system was 14.13 %.

3.2. Optimization of parameterization process
Among the first investigated parameters there were sampling
and frame rates. While an attempt to reduce the sampling
frequency from 16 kHz to other popular values 11.025 kHz
and 8 kHz did not yield any practical benefit, the change of
the frame window settings – the window length from 400 to

256 samples and the window shift from 160 to 224 samples –
speeded up parameterization without any negative impact on
the baseline WER. The shorter window allowed us to apply
the 256-point FFT instead of the 512-point one and the longer
shift slightly reduced the number of frames to be decoded.

The calculation of the FFT is one the bottlenecks on
devices that lack a FPU. Many researchers, therefore, try to
implement it in fixed-point arithmetic. The resulting code is
about one order faster but because of repeated rounding, a
WER increase in range 2 to 5 % is often reported [4, 5].

In our system we could use another approach. We may
postpone the start of the decoding procedure to the moment
when the utterance to be recognized has finished. Hence,
during speech recording, the CPU has enough time to compute
the complete sequence of feature vectors. We have optimized
the FFT procedure for the given (256-point) size at the
algorithmic level and have done the same also for the
conversion to the MFCC vector, but we employed the floating
point routines provided by the compiler. In this way we obtain
the feature vectors in their original precision in time that is a
fraction (about 1/2) of the window shift period.

This signal preprocessing component is the only module in
the entire recognizer where floating point numbers and
operations are used. At the output from this component, the
MFCCs are converted into 32-bit integers. The conversion is
done via multiplying the features by factors that are powers of
two. (This allows us to use fast bit-shifting scaling operations
later.) Each feature type (static, dynamic and acceleration),
has its own factor determined by feature histogram analysis.

3.3. Optimization of acoustic model
The use of context-independent phone models (monophones)
significantly contributes to the speed/memory optimization of
the decoding process. A small number of distinct states (48
HMMs x 3) allows for minimizing the need for likelihood
computation as the already computed values can be retrieved
from cache memory. The lower modeling accuracy of
monophones (vs. triphones) can be partly eliminated by larger
numbers of mixtures in each state. In the baseline system we
used 96 mixtures, in the MD version we can go up to 32 or 64
mixtures due to the fast likelihood computation routine.

Two gender-dependent (male and female) models have
been trained on approx. 60 hours of acoustic data. It was
mainly fluent speech recordings (primarily used for training of
continuous ASR models). To make the AM at least partly
matched to the target conditions, the training set was enhanced
by adding two hours of discrete speech recorded on two
different MD types.

After training, the AM was transformed to the form where
each gaussian is represented by its mean vector m� , inverse
covariance vector ms and constant mC , i.e. the parameters
that fit to eq. (2). All values were converted into integers -
again by using parameter-specific power-of-two factors.

3.4. Optimization of likelihood computation
It is known that the likelihood computation is one of the most
frequently used and the most CPU power demanding parts of
the decoder. Like many other authors, we solve the problem
by replacing the original equation of log pdf

)],,(log[))(log(2
1 mm

M
m m Ncp ��xx � �

�� (1)

by its max approximation

mbestmmmmmm
LCLp ������])([max))((max))(log(2 s�xxx (2)

996

Term mL represents the pdf of mixture m. It is computed as
the sum of contributions of individual features:

� �
��� P

p mpmpmpmm sxCL 1
2].)[(� (3)

Smart implementation of eq. (2) and (3) can save much
CPU time. The largest savings are already achieved by
adopting integer arithmetic. The code for eq. (3) is composed
of addition/subtraction and multiplication, properly combined
with the scaling of partial results. The scaling is done by
applying left and right bit-shifting operations.

The execution time needed for eq. (3) can be significantly
reduced by pruning at the mixture evaluation level. The

mL value calculated according to eq. (3) monotonically
decreases with increasing p. Hence, the summing loop in eq.
(2) can be stopped if *)(mbestm LpL 	 , where *mbestL is the
temporary max value achieved within the evaluation of eq.
(2).

The efficiency of this pruning scheme can be further
improved if mixture mbest is evaluated among the first ones.
In this case, most evaluations of mL will stop early. A detailed
analysis showed that mbest found in frame f could serve as a
good prediction of mbest* in frame f+1 (in the same state).
Our implementation uses this enhanced pruning scheme,
which reduces the average number of evaluated features (see
Table 2) and saves about 40 % of computation time compared
to direct evaluation of eq. (2-3). What is important is that this
scheme does not introduce any additional loss of accuracy.

Table 2. Average number of features in evaluation of
eq. (3) for different techniques and mixtures numbers

Average number of features for
Technique 16 mix 32 mix 64 mix
Direct evaluation 39 39 39
Evaluation with pruning 24.7 22.0 19.6
Pruning with prediction 21.2 18.8 16.7

3.5. Optimization of decoding procedure
The decoder is optimized for a lexicon that is represented as a
tree with shared prefixes. It builds its branched network of
nodes (model states) dynamically with respect to the processed
speech signal. It operates with integer-coded likelihoods,
performing actually only 2 types of operations: summing
(accumulation of likelihoods) and comparison (recombination
of accumulated likelihoods, pruning, candidate ordering). As
most of the code could be re-used from the baseline engine,
we just focused on the optimization of the pruning scheme.

The engine uses 2 types of pruning. Both are based on the
best overall accumulated score achieved in the previous frame.
Its value bestd , and state bests where it was achieved, are used
to determine 2 pruning thresholds for the current frame f.

beamwidthfdfpt best ���)1()(1 (4)

beamwidthfsLfdfpt bestbest �
��),()1()(2 (5)

The first threshold serves for eliminating calculation in the
nodes whose predecessors have scores lower than 1pt . The
second threshold is based on an estimate of bestd in frame f. Its
value is predicted from bestd (the score in state bests), to which
likelihood),(fsL best in the current frame is added. If a node
gets score that is below 2pt , it is pruned off. The value of
beamwidth controls the decoder’s speed, determining how
many nodes will survive the pruning. In our system, we set it

so that the increase of WER must not be worse than 0.2 %
compared to the case when double beamwidth is used.

3.6. Optimization of power consumption
When developing programs for MDs, one must consider also
the power consumption aspect. In our implementation it is
solved by splitting the whole process into multiple threads,
each having its priority level and CPU time requirements. The
lowest-level thread continuously acquires a signal from the
microphone and stores it in a 10-second-long circular buffer.
Its CPU load is almost negligible. The second thread performs
the FFT and MFCC computation using the emulated floating-
point routines. It runs only on demand, being triggered by a
voice activity detector. It requires about 40 % of CPU power.
After the end-point of speech is reached and confirmed, the
third thread gets the sequence of feature vectors, applies the
CMS normalization and performs the decoding procedure.
This thread utilizes the full power of the CPU.

3.7. Final implementation and user interface
The recognizer is written in C language and has form of a
DLL. It communicates with the user through interface whose
simple and intuitive design is shown in Fig. 1. Its largest area
is occupied by a text box. When a new word is recognized, the
candidate with the best score is added to the current text
position. Up to 5 next candidates are displayed below. The
user can select from them (using the touch screen) when
he/she wants to correct an error or disambiguate a homophone.
The two other buttons allow for deleting a word and for
toggling upper/lower case of the word’s first letter. The text
can be stored to the MD’s disk memory or sent as a short
message via the mobile phone. The application also allows the
user to add new words into the lexicon and to run a brief
speaker adaptation session. In the latter case, the adaptation
routine is performed on an attached PC. The program has been
successfully tested on several devices (e.g. HP iPAQ214,
Samsung Omnia i900, or HTC Touch HD) - see video [8].

Fig. 1. User interface of the dictation program

3.8. Experimental evaluation and comparison
For performance evaluation we recorded a new test set. It
contains newspaper text dictated by 24 speakers (13 male and
11 female), 5660 words in total, recorded on a PDA (HP
iPAQ214) and a mobile phone (Samsung Omnia i900). On this
data set, several types of experiments were conducted. In the
first series we measured the WER of the baseline engine
running on a PC (with full floating point implementation).
After that we evaluated the performance of the MD engine

997

optimized by employing the techniques described in sections
3.2 to 3.7. Again, we quantified WER (for the best candidate
and also for the first 6 ones, as these are available to the user).
Moreover, we measured the average time consumed by the
decoder and also the total delay elapsed from the utterance
endpoint to the moment when recognition is completed. In the
latter case, a 155-ms latency caused by the endpoint detector
must be added. (All the times were measured on the Omnia
device, 624 MHz.) The results are summarized in Table 3.

The constraint that the recognition delay should not be
longer than 0.5 s is fulfilled in case when the MD uses 32
mixtures. Then, the corresponding WER is 17.5 %, but at the
same time, there is only 3.2 % chance that the correct word is
not among the candidates the user can select from. If we
compare 32-mixture results achieved on the PC (with floating
point support) and on the MD, we see only 0.3 % difference in
WER, caused by all the optimization techniques. On the last
line we show also the results achieved after all the test persons
passed a short speaker adaptation session (270 words).

Table 3. Performance of several versions of dictation
program (PC with FPU vs. MD, 255K lexicon)

WER [%] Average delay [ms]
Engine version 1 best 6 best decoder total
PC – FPU, 96 mix 14.3 2.0 NA NA
PC – FPU, 32 mix 17.2 2.7 NA NA
MD – 16 mixtures 19.9 4.1 211 365
MD – 32 mixtures 17.5 3.2 341 495
MD – 64 mixtures 16.7 2.8 604 759
MD – 32 mix, adapt. 11.5 1.8 306 461

4. Server based dictation program
As an alternative to the above described fully embedded

application we developed also a prototype of a fluent speech
dictation program with distributed speech recognition. The
client is a rather small program that acquires a signal from the
microphone and compresses it from its original 256 kbit/s rate
to 16 kbits/s (using the Speex codec [11]). The compressed
signal is sent via WiFi or GPRS to the server. On the server
side, we run a slightly modified version of our NewtonDictate
program [9] equipped with a 370K-word lexicon. The reason
why we transmit the speech signal (not its preprocessed
features) is that we want to utilize all the benefits that the
dictation program offers, namely the option to replay and
check the recorded and transcribed data (stored on the server).
The recognized text is sent back to the MD and displayed on
the interface in the way similar to the previous program. Its
function can be seen in videos [12] or [13]. The latter
demonstrates that by employing the Google translate facility
[14] we can get a simple speech-to-L2text translation.

We have also conducted a series of experiments. The most
interesting one was to compare the direct dictation into a PC
with the dictation via a MD. Two persons were asked to
dictate newspaper texts (7789 words in total) into a close-talk
microphone attached to the PC, and at the same time, also into
a MD held in a hand and connected by WiFi to the recognition
server. The averaged WER value for the former situation was
8.2 % while for the latter it was 17.9 %, i.e. significantly
worse. We found out that only 1 % of this accuracy loss was
due to the applied signal compression. The remaining and
larger portion was due to the lower quality of a signal
provided by mobile devices. This demonstrates another
limitation that must be taken into account when developing
voice applications for recently available mobile devices.

5. Discussion and conclusions
In this paper we propose two solutions to the problem of voice
dictation into modern mobile devices. Both are focused on the
tasks and the languages where large vocabularies are required.

The first (embedded) program has the advantage that it
can be used anywhere without the need to be connected to
(and pay for) the wireless network. Its drawback consists in
the constraint that the user must dictate the text with short
pauses between words. The relatively high WER (about 17 %
in the speaker independent mode) is caused partly by the
lower speech signal quality (compared to a PC with a close-
talk microphone).

The second, client-server based solution allows the user to
dictate in a natural fluent way, but the overall results are not
significantly better compared to the standalone version – the
main reason being the lower signal quality.

From the user’s point of view, the discrete dictation
system offers an immediate and more comfortable method for
error correction (or disambiguation). When compared to the
classic T9-supported stylus typing, the program saves ~ 30 %
time. The recognition accuracy, and hence also the dictation
speed and comfort, can be further improved by speaker
adaptation, which takes about 10 minutes and reduces the
WER to some 10 %.

6. Acknowledgements

This work was supported by the Grant Agency of the Czech Republic
(grants no. 102/08/0707 and 102/07/P430) and by the Grant Agency of
the Czech Academy of Sciences (grant no. 1QS108040569).

7. References
[1] Basapur, S., Xu, S., Ahlenius, M., and Lee, Y. S., “User

Expectations from Dictation on Mobile Devices”, J. Jacko (Ed.):
Human-Computer Interaction, part II, LNCS 4551. Springer-
Verlag Berlin Heidelberg, pp. 217-225.

[2] Cohen, J., “Embedded speech recognition applications in mobile
phones: status, trends and challenges”, Proc. of ICASSP 2008,
Las Vegas, pp. 5352-5355.

[3] Rose, R. C., Arizmedi, I.: Efficient client-server based
implementations of mobile speech recognition services. Speech
communication, vol. 48 (2006), no. 11, pp. 1573-1589.

[4] Kohler, T.W., Fugen, C, Stuker, S and A. Waibel, Rapid porting
of ASR-systems to mobile devices,” Proc. of Interspeech 2005,
Lisbon, pp. 233–236.

[5] Huggins-Daines, D. et al, “PocketSphinx: A Free, Real-Time
Continuous Speech Recognition System for Hand-Held
Devices”, Proc. of ICASSP 2006, pp. 185-188.

[6] Olsen J., Cao Y., Ding G., Yang X., "A Decoder for Large
Vocabulary Continuous Short Message Dictation On Embedded
Devices", Proc. of ICASSP 2008, 4337-4340, 2008.

[7] Alhonen J., Cao Y., Ding G., Liu Y., Olsen J., Wang X., Yang
X., “Mandarin Short Message Dictation on Symbian Series 60
Mobile Phones,” The Int. Conf. on Mobile Technology,
Applications and Systems, Singapore, 2007.

[8] http://www.youtube.com/watch?v=T0oFoPfIpgI
[9] Nouza J., Zdansky J, Cerva P, Silovsky J: Challenges in Speech

Processing of Slavic Languages (Case Studies in Speech
Recognition of Czech and Slovak). To appear in Springer LNAI
Series, 2009.

[10] Cerva, P., Nouza J.: Design and Development of Voice
Controlled Aids for Motor-Handicapped Persons. Proc. of
Interspeech, Antwerp, 2007, pp. 2521-2524

[11] http://speex.org/
[12] http://www.youtube.com/watch?v=6-7R7Vsdewc
[13] http://www.youtube.com/watch?v=jO-4tySAUP4
[14] http://translate.google.com/

998

