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Abstract 
This paper deals with optimization techniques that can make 
very large vocabulary voice dictation applications deployable 
on recent mobile devices. We focus namely on optimization of 
signal parameterization (frame rate, FFT calculation, fixed-
point representation) and on efficient pruning techniques 
employed on the state and Gaussian mixture level. We 
demonstrate the applicability of the proposed techniques on 
the practical design of an embedded 255K-word discrete 
dictation program developed for Czech. Its real performance is 
comparable to a client-server version of the fluent dictation 
program implemented on the same mobile device. 
Index Terms: large vocabulary dictation, mobile device 

1. Introduction 
Voice-controlled applications, particularly dictation programs, 
have already proven their viability on classic PCs, where the 
efficiency of voice input starts to compete with traditional 
keyboard typing. The main advantage of a modern PC is that 
it offers a combination of high computation power and large 
memory, i.e. the two key parameters required for a practical 
implementation of complex speech recognition procedures. 

To seek for new challenges, many speech researchers are 
shifting their attention from desktop PCs to mobile devices, 
such as PDAs or smart phones. The motivation is obvious. 
These miniature devices offer very poor (and uncomfortable) 
possibilities for entering text data. Their keyboards are small, 
usually display only a subset of all available characters, often 
require a special stylus, and last but not least, stylus typing is 
rather slow and suffers from frequent errors. Therefore, voice 
input implemented into these devices would be appreciated 
even more than in case of standard PCs.   

Unfortunately, it is not easy to meet all the requirements 
that most mobile device users and developers expect from 
speech technology [1, 2]. The reason is that the desktop and 
handheld devices differ significantly in their technical 
parameters, as it is summarized in Table 1. In general, a recent 
mobile device (MD) operates with a CPU that is at least 5 
times slower than that in a PC. Also the operational memory is 
5 to 10 times smaller. What most MDs lack, is a Floating 
Point Unit (FPU), a component that is essential for complex 
speech processing algorithms. Moreover, there is a significant   
difference in voice signal quality. While on a PC we can use a 
high quality close-talk microphone supported by a standard 
sound card, in case of a mobile device we must use either the 
embedded miniature microphone or an external hands-free set. 
Unfortunately, none of these two options provide signal 
quality that is as good as that on a PC. (For comparison, see 
section 4.) Last but not least, we should mention also the 
problem of power supply. Batteries used in MDs have very 
limited capacity and this fact must be taken into account when 
developing programs that require CPU intensive operation.

Table 1.  Parameters of desktop and mobile devices. 

Parameters Desktop PC Mobile device 
CPU speed 2 – 3 GHz 0.4 – 0.6 GHz 
Memory 1 – 2 GB 0.1 – 0.25 GB 
FPU included missing 
Voice channel quality high   lower 
Power supply capacity not so critical very limited 

Technical limitations of MDs can be overcome in several 
ways. An often used approach is to utilize distributed 
computing and let the CPU intensive procedures run on a 
remote server as shown, for example, in [3]. The main 
drawback of this solution is that during dictation, the MD must 
be connected to the server via one of the available wireless 
networks (e.g. WiFi, GPRS, etc). Another approach consists in 
the development of a special recognizer that can operate 
within the limits of MDs. This can be done either by porting 
and optimizing existing engines (e.g. pocket versions of Janus 
[4] or Sphinx [5]) or by designing mobile devices and 
platforms that already support speech recognition, like it has 
been done by Nokia [6, 7]. Unfortunately, even the latest 
products of this type are capable of managing vocabularies 
whose size is restricted to several thousands (at maximum tens 
of thousands) of words. Hence, they can be deployed in 
specific tasks only. Yet, this approach becomes totally 
unusable in inflected languages, where even domain restricted 
tasks require tens to hundreds of thousands words. 

2. Motivation and goals 
In this paper, we describe our solution to the very-large-
vocabulary voice dictation problem. The task we solved was 
challenging: build a standalone speech recognizer for Czech 
that would be practically deployable on recent PDAs and 
smart mobile phones. We had to find a way to manage 
vocabularies with 250K+ words and make voice input faster 
than the typing with a stylus (supported by the T9). Our 
approach employs a discrete speech recognition engine 
optimized for speed, memory usage and power consumption. 
Using the touch screen for disambiguation and correction of 
voice input, we almost eliminate the use of the stylus [8].  
      The engine has been designed as language independent, 
though we had in mind Czech users as the first target group. 
Czech is an inflected language with more than one million 
distinct word-forms. If we want to ensure practically 
applicable dictation of common texts, the OOV rate must not 
be higher than 1 %. Our previous study [9] showed that in that 
case the lexicon had to contain at least 250K words. 

To make the development fast and efficient, we wanted to 
re-use our previously created codes and modules, all written 
for the Microsoft Windows platform. Its ‘pocket’ version, the 
Windows Mobile (WM), has become quite popular among the 
producers of PDAs and smart phones (e.g. HP, Samsung, 
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HTC, and others) as well as among MD users, recently. 
Therefore, we decided to port our engine to the WM OS. 

The other practical requirements on the dictation program 
can be briefly summarized as follows: latency shorter than 0.5 
seconds, speaker independent (but gender specific) operation, 
optional speaker adaptation, and on-line lexicon modification 
(a possibility to add new words during dictation). 

For evaluation and comparison purposes we have 
developed also a client-server based fluent speech recognizer 
running on the same type of the MDs. We briefly describe its 
features in section 4.

3. Standalone dictation program 
For the development of the dictation program we could use 
modules that had been already designed and deployed in the 
software called MyDictate [10]. The software is aimed at 
motor-handicapped users who cannot use keyboard and 
mouse. All actions, i.e. dictated words as well as correcting, 
editing and formatting commands are controlled by voice, 
using a vocabulary containing about 550K words. The words 
and commands have to be pronounced in isolated way with a 
short pause (> 0.5 s) between them. This solution proved to be 
both acceptable as well as robust for the target user group, 
which is documented by almost 100 installations distributed so 
far. A typical WER value is about 9 % in the speaker 
independent mode, or 6 % in the speaker adapted mode.   

The first idea was to port this software to MDs equipped 
with StrongARM family of processors and Windows Mobile 
6.1 OS. This initial attempt failed because: a) the 550K-word 
vocabulary and its language model were too large for MD’s 
operation memory, and b) even if the vocabulary size was 
reduced to a half, the recognition time was extremely long 
(almost 30 seconds per word). We realized that for successful 
porting we had to analyze and consequently optimize namely 
the following settings, parameters, and procedures: 

� signal sampling rate and frame rate, 
� FFT and MFCC calculation, 
� acoustic model representation,
� likelihood computation and efficient decoding scheme. 

3.1. Baseline recognition engine  
To allow for later performance comparison with the optimized 
versions, we briefly summarize the settings of the original 
engine: signal sampling rate 16 kHz, frame window length 25 
ms (400 samples), window shift 10 ms (160 samples), 512-
point FFT, 39 MFCC parameters, 41 phones + 7 noises, 3-
state context independent HMMs, 96 gaussians per each state, 
tree-structure lexicon of 255K words, unigram LM. It should 
be noted that the mentioned lexicon size and the LM in form 
of unigrams were chosen here to make the baseline system 
comparable to what can be fitted to the latest MD processors. 
The baseline engine was implemented in C language using 32-
bit float types for the variables, like features, likelihoods, etc. 

To analyze the impact of various settings and alternative 
implementations on speed and recognition score, we created a 
development set of 2400 words recorded by 4 persons on 2 
MD types. The WER for the baseline system was 14.13 %. 

3.2. Optimization of parameterization process  
Among the first investigated parameters there were sampling 
and frame rates. While an attempt to reduce the sampling 
frequency from 16 kHz to other popular values 11.025 kHz 
and 8 kHz did not yield any practical benefit, the change of 
the frame window settings – the window length from 400 to 

256 samples and the window shift from 160 to 224 samples – 
speeded up parameterization without any negative impact on 
the baseline WER. The shorter window allowed us to apply 
the 256-point FFT instead of the 512-point one and the longer 
shift slightly reduced the number of frames to be decoded. 

The calculation of the FFT is one the bottlenecks on 
devices that lack a FPU. Many researchers, therefore, try to 
implement it in fixed-point arithmetic. The resulting code is 
about one order faster but because of repeated rounding, a 
WER increase in range 2 to 5 % is often reported [4, 5]. 

In our system we could use another approach. We may 
postpone the start of the decoding procedure to the moment 
when the utterance to be recognized has finished. Hence, 
during speech recording, the CPU has enough time to compute 
the complete sequence of feature vectors. We have optimized 
the FFT procedure for the given (256-point) size at the 
algorithmic level and have done the same also for the 
conversion to the MFCC vector, but we employed the floating 
point routines provided by the compiler. In this way we obtain 
the feature vectors in their original precision in time that is a 
fraction (about 1/2) of the window shift period.

This signal preprocessing component is the only module in
the entire recognizer where floating point numbers and 
operations are used. At the output from this component, the 
MFCCs are converted into 32-bit integers. The conversion is 
done via multiplying the features by factors that are powers of 
two. (This allows us to use fast bit-shifting scaling operations 
later.) Each feature type (static, dynamic and acceleration), 
has its own factor determined by feature histogram analysis.  

3.3. Optimization of acoustic model  
The use of context-independent phone models (monophones) 
significantly contributes to the speed/memory optimization of 
the decoding process. A small number of distinct states (48 
HMMs x 3) allows for minimizing the need for likelihood 
computation as the already computed values can be retrieved 
from cache memory. The lower modeling accuracy of 
monophones (vs. triphones) can be partly eliminated by larger 
numbers of mixtures in each state. In the baseline system we 
used 96 mixtures, in the MD version we can go up to 32 or 64 
mixtures due to the fast likelihood computation routine. 

Two gender-dependent (male and female) models have 
been trained on approx. 60 hours of acoustic data. It was 
mainly fluent speech recordings (primarily used for training of 
continuous ASR models). To make the AM at least partly 
matched to the target conditions, the training set was enhanced 
by adding two hours of discrete speech recorded on two 
different MD types. 

After training, the AM was transformed to the form where 
each gaussian is represented by its mean vector m� , inverse 
covariance vector ms  and constant mC , i.e. the parameters 
that fit to eq. (2). All values were converted into integers - 
again by using parameter-specific power-of-two factors. 

3.4. Optimization of likelihood computation  
It is known that the likelihood computation is one of the most 
frequently used and the most CPU power demanding parts of 
the decoder. Like many other authors, we solve the problem 
by replacing the original equation of log pdf 

)],,(log[))(log( 2
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by its max approximation 
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Term mL represents the pdf of mixture m. It is computed as 
the sum of contributions of individual features:

� �
��� P

p mpmpmpmm sxCL 1
2 ].)[( �                   (3) 

Smart implementation of eq. (2) and (3) can save much 
CPU time. The largest savings are already achieved by 
adopting integer arithmetic. The code for eq. (3) is composed 
of addition/subtraction and multiplication, properly combined 
with the scaling of partial results. The scaling is done by 
applying left and right bit-shifting operations. 

The execution time needed for eq. (3) can be significantly 
reduced by pruning at the mixture evaluation level. The 

mL value calculated according to eq. (3) monotonically 
decreases with increasing p. Hence, the summing loop in eq. 
(2) can be stopped if *)( mbestm LpL 	 , where *mbestL  is the 
temporary max value achieved within the evaluation of eq. 
(2).

The efficiency of this pruning scheme can be further 
improved if mixture mbest is evaluated among the first ones. 
In this case, most evaluations of mL will stop early. A detailed 
analysis showed that mbest found in frame f could serve as a 
good prediction of mbest* in frame f+1 (in the same state). 
Our implementation uses this enhanced pruning scheme, 
which reduces the average number of evaluated features (see 
Table 2) and saves about 40 % of computation time compared 
to direct evaluation of eq. (2-3). What is important is that this 
scheme does not introduce any additional loss of accuracy. 

Table 2.  Average number of features in evaluation of 
eq. (3) for different techniques and mixtures numbers 

Average number of features for  
Technique 16 mix 32 mix 64 mix 
Direct evaluation 39 39 39 
Evaluation with pruning 24.7 22.0 19.6 
Pruning with prediction 21.2 18.8 16.7 

3.5. Optimization of decoding procedure  
The decoder is optimized for a lexicon that is represented as a 
tree with shared prefixes. It builds its branched network of 
nodes (model states) dynamically with respect to the processed 
speech signal. It operates with integer-coded likelihoods, 
performing actually only 2 types of operations: summing 
(accumulation of likelihoods) and comparison (recombination 
of accumulated likelihoods, pruning, candidate ordering). As 
most of the code could be re-used from the baseline engine, 
we just focused on the optimization of the pruning scheme.

The engine uses 2 types of pruning. Both are based on the 
best overall accumulated score achieved in the previous frame.
Its value bestd , and state bests where it was achieved, are used 
to determine 2 pruning thresholds for the current frame f.

beamwidthfdfpt best ��� )1()(1                 (4) 

beamwidthfsLfdfpt bestbest �
�� ),()1()(2        (5) 

The first threshold serves for eliminating calculation in the 
nodes whose predecessors have scores lower than 1pt . The 
second threshold is based on an estimate of bestd  in frame f. Its 
value is predicted from bestd (the score in state bests ), to which 
likelihood ),( fsL best in the current frame is added. If a node 
gets score that is below 2pt , it is pruned off. The value of 
beamwidth controls the decoder’s speed, determining how 
many nodes will survive the pruning. In our system, we set it 

so that the increase of WER must not be worse than 0.2 % 
compared to the case when double beamwidth is used. 

3.6. Optimization of power consumption  
When developing programs for MDs, one must consider also 
the power consumption aspect. In our implementation it is 
solved by splitting the whole process into multiple threads, 
each having its priority level and CPU time requirements. The 
lowest-level thread continuously acquires a signal from the 
microphone and stores it in a 10-second-long circular buffer. 
Its CPU load is almost negligible. The second thread performs 
the FFT and MFCC computation using the emulated floating-
point routines. It runs only on demand, being triggered by a 
voice activity detector. It requires about 40 % of CPU power. 
After the end-point of speech is reached and confirmed, the 
third thread gets the sequence of feature vectors, applies the 
CMS normalization and performs the decoding procedure. 
This thread utilizes the full power of the CPU.

3.7.  Final implementation and user interface 
The recognizer is written in C language and has form of a 
DLL. It communicates with the user through interface whose 
simple and intuitive design is shown in Fig. 1. Its largest area 
is occupied by a text box. When a new word is recognized, the 
candidate with the best score is added to the current text 
position. Up to 5 next candidates are displayed below. The 
user can select from them (using the touch screen) when 
he/she wants to correct an error or disambiguate a homophone. 
The two other buttons allow for deleting a word and for 
toggling upper/lower case of the word’s first letter. The text 
can be stored to the MD’s disk memory or sent as a short 
message via the mobile phone. The application also allows the 
user to add new words into the lexicon and to run a brief 
speaker adaptation session. In the latter case, the adaptation 
routine is performed on an attached PC. The program has been 
successfully tested on several devices (e.g. HP iPAQ214, 
Samsung Omnia i900, or HTC Touch HD) - see video [8]. 

Fig. 1. User interface of the dictation program

3.8. Experimental evaluation and comparison  
For performance evaluation we recorded a new test set. It 
contains newspaper text dictated by 24 speakers (13 male and 
11 female), 5660 words in total, recorded on a PDA (HP 
iPAQ214) and a mobile phone (Samsung Omnia i900). On this 
data set, several types of experiments were conducted. In the 
first series we measured the WER of the baseline engine 
running on a PC (with full floating point implementation). 
After that we evaluated the performance of the MD engine 
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optimized by employing the techniques described in sections 
3.2 to 3.7. Again, we quantified WER (for the best candidate 
and also for the first 6 ones, as these are available to the user). 
Moreover, we measured the average time consumed by the 
decoder and also the total delay elapsed from the utterance 
endpoint to the moment when recognition is completed. In the 
latter case, a 155-ms latency caused by the endpoint detector 
must be added. (All the times were measured on the Omnia 
device, 624 MHz.) The results are summarized in Table 3. 

The constraint that the recognition delay should not be 
longer than 0.5 s is fulfilled in case when the MD uses 32 
mixtures. Then, the corresponding WER is 17.5 %, but at the 
same time, there is only 3.2 % chance that the correct word is 
not among the candidates the user can select from. If we 
compare 32-mixture results achieved on the PC (with floating 
point support) and on the MD, we see only 0.3 % difference in 
WER, caused by all the optimization techniques. On the last 
line we show also the results achieved after all the test persons 
passed a short speaker adaptation session (270 words).

Table 3.  Performance of several versions of dictation 
program (PC with FPU vs. MD, 255K lexicon)  

WER [%] Average delay [ms]  
Engine version 1 best 6 best decoder total 
PC –  FPU, 96 mix 14.3 2.0 NA NA 
PC –  FPU, 32 mix 17.2 2.7 NA NA 
MD – 16 mixtures 19.9 4.1 211 365 
MD – 32 mixtures 17.5 3.2 341 495 
MD – 64 mixtures 16.7 2.8 604 759 
MD – 32 mix, adapt.  11.5 1.8 306 461 

4. Server based dictation program 
As an alternative to the above described fully embedded 

application we developed also a prototype of a fluent speech 
dictation program with distributed speech recognition. The 
client is a rather small program that acquires a signal from the 
microphone and compresses it from its original 256 kbit/s rate 
to 16 kbits/s (using the Speex codec [11]). The compressed 
signal is sent via WiFi or GPRS to the server. On the server 
side, we run a slightly modified version of our NewtonDictate 
program [9] equipped with a 370K-word lexicon. The reason 
why we transmit the speech signal (not its preprocessed 
features) is that we want to utilize all the benefits that the 
dictation program offers, namely the option to replay and 
check the recorded and transcribed data (stored on the server). 
The recognized text is sent back to the MD and displayed on 
the interface in the way similar to the previous program. Its 
function can be seen in videos [12] or [13]. The latter 
demonstrates that by employing the Google translate facility 
[14] we can get a simple speech-to-L2text translation. 

We have also conducted a series of experiments. The most 
interesting one was to compare the direct dictation into a PC 
with the dictation via a MD. Two persons were asked to 
dictate newspaper texts (7789 words in total) into a close-talk 
microphone attached to the PC, and at the same time, also into 
a MD held in a hand and connected by WiFi to the recognition 
server. The averaged WER value for the former situation was 
8.2 % while for the latter it was 17.9 %, i.e. significantly 
worse. We found out that only 1 % of this accuracy loss was 
due to the applied signal compression. The remaining and 
larger portion was due to the lower quality of a signal 
provided by mobile devices. This demonstrates another 
limitation that must be taken into account when developing 
voice applications for recently available mobile devices.  

5. Discussion and conclusions 
In this paper we propose two solutions to the problem of voice 
dictation into modern mobile devices. Both are focused on the 
tasks and the languages where large vocabularies are required.

The first (embedded) program has the advantage that it 
can be used anywhere without the need to be connected to 
(and pay for) the wireless network. Its drawback consists in 
the constraint that the user must dictate the text with short 
pauses between words. The relatively high WER (about 17 % 
in the speaker independent mode) is caused partly by the 
lower speech signal quality (compared to a PC with a close-
talk microphone).

The second, client-server based solution allows the user to 
dictate in a natural fluent way, but the overall results are not 
significantly better compared to the standalone version – the 
main reason being the lower signal quality.  

From the user’s point of view, the discrete dictation 
system offers an immediate and more comfortable method for 
error correction (or disambiguation). When compared to the 
classic T9-supported stylus typing, the program saves ~ 30 % 
time. The recognition accuracy, and hence also the dictation 
speed and comfort, can be further improved by speaker 
adaptation, which takes about 10 minutes and reduces the 
WER to some 10 %.
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