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Abstract
Since recognition errors are unavoidable in speech recognition,
confidence scoring, which accurately estimates the reliability
of recognition results, is a critical function for speech recogni-
tion engines. In addition to achieving accurate confidence es-
timation, if we are to develop speech recognition systems that
will be widely used by the public, speech recognition engines
must be able to report the causes of errors properly, namely
they must offer a reason for any failure to recognize input ut-
terances. This paper proposes a method that simultaneously es-
timates both confidences and causes of errors in speech recog-
nition results by using discriminative models. We evaluated the
proposed method in an initial speech recognition experiment,
and confirmed its promising performance with respect to confi-
dence and error cause estimation.
Index Terms: speech recognition, confidence, error cause, dis-
criminative model

1. Introduction
As a result of the significant progress that has been made
on speech recognition technology, practical speech recognition
systems have been developed for certain applications, e.g. the
closed-captioning of news broadcasts [1] and recording of par-
liamentary minutes [2]. However, there are almost no systems
that are widely used by the public.

The reason for this is mainly attributable to two problems
[3, 4]. The first is that users are not familiar with the proper
usage of speech recognition systems and cannot understand
the behavior of the systems when they use them improperly.
The second problem is that system developers do not know the
proper way to use speech recognition engines or how to ex-
ploit their performance. To solve these problems, in [3, 4], a
framework is proposed for developing speech recognition sys-
tems that involves close cooperation between engine builders,
system developers and users.

To enable users to use speech recognition systems properly
and to enable system developers to exploit the performance of
speech recognition engines adequately, we focus on enhancing
the functions of speech recognition engines. Since errors are
unavoidable in speech recognition, confidence scoring, which
accurately estimates the reliability of the recognition results, is
a critical function for speech recognition engines. Many stud-
ies have attempted to develop good confidence measures [5]. In
addition to achieving accurate confidence estimation, it is im-
portant for speech recognition engines to report the causes of
errors properly, namely they must offer a reason for any failure
to recognize input utterances (Section 2).

In this paper, we propose a method that simultaneously es-
timates both confidences and causes of errors in speech recog-
nition results by using discriminative models. Error handling
has been actively studied in the research area of spoken dia-
logue systems [6]. In these studies, confidence measures are
used to detect the occurrences of errors in human-machine di-
alogues. In contrast, the proposed method not only detects the
occurrences of errors but also estimates their causes directly.
The estimation of confidences and error causes is formulated
as a discrimination problem (Section 3). We evaluate the pro-
posed method in an initial speech recognition experiment, and
confirm its promising performance as regards confidence and
error cause estimation (Section 4). The proposed method has

the potential to be utilized in various research and development
themes concerned with speech recognition (Sections 5 and 6).

2. Effects of error cause estimation
Here we consider a simple question-answering spoken dialogue
task, namely “receive a question about the weather of a Japanese
city uttered by an adult male in a clean environment and provide
a forecast”. Fig. 1 shows examples of two speech recogni-
tion systems that can execute this task. System A is based on
a speech recognition engine that can estimate the confidences
of recognition results. System B is based on an engine that can
estimate both the confidences and error causes of recognition
results. We use these examples to consider the effects of direct
error cause estimation for users.

If users employ the systems properly (U0), the answers
from both systems are probably the same. In this case, recog-
nition results are obtained with high confidence scores in both
systems, and users could obtain proper answers (A0 and B0). In
contrast, if the users employ the systems improperly, recogni-
tion results are probably obtained with low confidence scores in
both systems, and the answers from the two systems will differ.
Improper uses include out-of-vocabulary (OOV) words are em-
ployed, e.g. the system is presented with unknown city names
(U1), the system is used in noisy environments, e.g. in a mov-
ing vehicle (U2), or the system is used by unexpected users, e.g.
females, children or the elderly (U3).

System A can ask users to repeat their utterances (AX).
However, the users cannot understand the reason for this re-
quest. Or the system may remain silent (AY). In this case, the
users cannot even know whether or not the system is working.
However, even if the system provides a detailed technical expla-
nation for rejecting the users’ utterances (AZ), the users’ only
response will be silence (these technical explanations may be
useful for system developers).

On the other hand, because system B can estimate the
causes of recognition result errors, it can provide proper re-
quests to users (B1, B2 and B3) according to the type of im-
proper use (U1, U2 and U3). The users can then use the system
properly in accordance with the system requests and thus the
recognition performance of the system is improved.

3. Proposed method
We propose a conditional random fields (CRF) [7] based
method for the simultaneous estimation of the confidences and
error causes of speech recognition results. CRF is a discrimina-
tive model and has been applied to natural language processing
tasks such as parsing, tagging and segmentation.

In the following, xi denotes an input observation vector and
yi denotes an output label vector corresponding to xi. In ad-
dition, X = x1,x2, · · · ,xL(X) denotes a sequence of xi of
length L(X) and Y = y1,y2, · · · ,yL(X) denotes a sequence
of yi corresponding toX . We can obtain a conditional proba-
bility p(Y |X) by using CRF as follows:

p(Y |X) =
exp
∑L(X)

i=1

∑K
k=1λkfk(xi,yi)

∑
Y ′ exp

∑L(X)
j=1

∑K
l=1λlfl(xj ,yj

′)
, (1)

where λk is the weight of the k-th feature function fk(xi,yi)
and K is the number of weights and feature functions. The set
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20 degrees.

Improper uses

Answer when confidence 
is high

Proper use

U1

A0

AX

AY

AZ

B1

B2

B3

System A is based on a speech recognition engine that 
can estimate the confidences of recognition results.

U0

U1

U2

U3

What’s the 
temperature in 
Kyoto today?

What’s the 
temperature in 

Brighton today?

U0

What’s the 
temperature in 
Kyoto today?

U2

What’s the 
temperature in 
Kyoto today?

U3

System B is based on a speech recognition engine that 
can estimate the confidences and error causes of 
recognition results.

Answer when confidence 
is low

Please repeat.          Why?

…(silence)

Is it working or not?

Your utterance was rejected
because the likelihood ratio 
of the recognition result and 
the phonetic typewriter was 
too small.        …?(silence)

20 degrees.

Answer when confidence 
is high

B0
Answer when confidence 
is low

I don’t know the 
place name. I know 
Japanese cities.

Too much background 
noise. Please use me in 
a quiet place.

I guess you are a child. 
Please push my 
“children” button.

System A System B

Unknown city name

Noisy environment

Child �Figure 1: Examples of the speech recognition systems to consider the effects of direct error cause estimation for users.
Table 1: Definition of the four elements in y.

yd Meaning when yd = 0 Meaning when yd = 1

y0 The recognized word is correct. The recognized word is incorrect.
y1 The uttered word is IV. The uttered word is OOV.
y2 The system is used in a clean environment. The system is used in a noisy environment.
y3 The system is used by an adult male (expected gender). The system is used by an adult female (unexpected gender).

Table 2: Possible IDs which y takes and corresponding meanings (IDs are given by bit operations).
ID of y y0 y1 y2 y3 Meaning of y

0 0 0 0 0 There is no error cause that is focused on, and the recognized word is correct.
1 0 0 0 1 The system is used by an adult female, however the recognized word is correct.
2 0 0 1 0 The system is used in a noisy environment, however the recognized word is correct.
8 1 0 0 0 There is no error cause that is focused on, however the recognized word is incorrect.
9 1 0 0 1 The system is used by an adult female, therefore the recognized word is incorrect.
10 1 0 1 0 The system is used in a noisy environemt, therefore the recognized word is incorrect.
12 1 1 0 0 The uttered word is OOV, therefore the recognized word is incorrect.

of weights {λk}Kk=1 is estimated by a quasi-Newton method
such as L-BFGS [8] and a forward-backward algorithm using
training data {(Xm,Y m)}Mm=1.

In the proposed method, as with conventional confidence
estimation methods [5], we define xi as a set of features that
are related to a word in a recognized word sequence. Features
concerned with a recognized word are, for example, the average
acoustic likelihood, the average phoneme duration, the linguis-
tic likelihood and the posterior probability. These features are
collected in the main recognition process and certain additional
processes.

The definition of yi is the key feature of the proposed
method. We define yi as a D-dimensional vector in which each
element yd(d = 0, 1, · · · , D−1) takes binary digits 0 or 1. One
of the elements, y0 for convenience, denotes that the recognized
word is correct (y0 = 0) or incorrect (y0 = 1). And each re-
maining D − 1 element yd(d = 1, 2, · · · , D − 1) denotes the
nonexistence (yd = 0) or existence (yd = 1) of each of D − 1
error cause on which we focus. For example, if we define y1 as
an element that is related toOOV, y1 = 0 denotes in-vocabulary
(IV) and y1 = 1 denotesOOV. Conventional confidence estima-
tion methods [5] estimate only the reliability of the recognized
word (i.e. the value of y0 in the above definition). In contrast,
based on the above definition of yi, the proposed method can
estimate not only the reliability of the recognized word but also
its error causes simultaneously.

In Section 4, we evaluate the proposed method in an initial
isolated word utterance recognition experiment. For the exper-
iment, because L(x) = 1, we shrink X and Y to x and y,
respectively. Accordingly, we shrink Eq. (1) as follows:

p(y|x) = exp
∑K

k=1λkfk(x,y)
∑
y′ exp

∑K
l=1 λlfl(x,y′)

. (2)

Eq. (2) is a conditional probability obtained by using a
maximum entropy model (MaxEnt) [9], which is also a discrim-
inative model. Thus, we evaluate the proposed method based on
MaxEnt in the next section.

4. Speech recognition experiment
We assume a simple speech recognition system that “recognizes
a Japanese city name uttered by an adult male in a clean environ-
ment”. We evaluate the proposed method based on this system.

4.1. Definition of y

We focus on three error causes; OOV, use in a noisy environ-
ment and use by an adult female (unexpected gender). Accord-
ingly, the four elements in y are defined as shown in Table 1. In
addition, we assume that there is no more than one error cause
at a time. Thus, possible IDs taken by y and corresponding
meanings are defined as shown in Table 2.

As shown in Table 2, the recognized word could be correct
even if the system is used by adult females (ID=1) or in noisy
environments (ID=2). However, obviously, the recognized word
cannot be correct if an OOV word is uttered (ID=4 is impossi-
ble).

The case ID=8 has the potential to play an important role.
Here we focus on only three error causes. However, we ex-
pect that, by defining ID=8, we will be able to cover other error
causes, such as too large or too small a volume of utterance or a
user with unexpected age (e.g. a child or an elderly person). Be-
cause ID=8 says that “there is no error cause that is focused on,
however the recognized word is incorrect” in Table 2, in other
words, “there may be some error causes that are not focused on,
therefore the recognized word is incorrect”.
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Male clean HMM

Male clean GMM
Male noisy GMM

Female clean GMM

JNAS male clean,

#spks=130,#utts=20k

Office noise data

HMM and GMM training data
MaxEnt training data

#spks=100, #utts=9607

Adult male clean 
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#mixs=16

Adult male 
clean GMM, 
#mixs=128
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#spks=130,#utts=20k
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noisy GMM,
#mixs=128
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clean GMM,
#mixs=128

Contamination

with SNR=5dBJNAS male noisy,

#spks=130,#utts=20k

50 IV city adult male clean,

#spks=50,#utts=2372

50 OOV city adult male clean,
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50 IV city adult male noisy,

#spks=50,#utts=2372

50 IV city adult female clean,

#spks=50,#utts=2436

50 OOV city adult male clean,

#spks=25,#utts=1216

50 IV city adult male noisy,

#spks=25,#utts=1184

50 IV city adult female clean,

#spks=25,#utts=1212

50 IV city adult male clean,

#spks=25,#utts=1184

Feature 
functions
K=840

Speech recognition
& (x,y) pair collection

Recognition results
& pairs of x and y

MaxEnt training

MaxEnt

Recognition results 
& set of x

Set of y & p(y|x)

Discrimination

Speech recognition
& x collection (20)

Dictionary
3780-cities

(21)

(22)

(23)

(26)

(27)

(28)

(29)

(25)

(24)

(1) (2)

(3)

(4)

(5)

(6) (7)

(8)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

GMM trainingHMM training

(9) (10) (11)

Evaluation data
#spks=50, #utts=4796

(8)

(9)
(10)
(11)

Likelihood ratio of the recognized 
word and the phonetic typewriter
Average acoustic likelihood
Minimum phoneme duration

Maximum phoneme duration
Average phoneme duration
Minimum phoneme likelihood
Maximum phoneme likelihood
Average phoneme likelihood
Average acoustic likelihood
Average acoustic likelihood
Average acoustic likelihood 

0.

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

20

10
10

10
10
10
10
10
10
10
10

Table: Definition of x.

11-features #binsModels generate features

�
Figure 2: Procedures of speech recognition experiment.

4.2. Experimental procedure
Fig. 2 shows the experimental procedures. We trained a hid-
den Markov model (HMM)-based acoustic model and Gaussian
mixture models (GMMs), which we used for the speech recog-
nition and (x,y) pair collection process. An adult male clean
speech HMM-based acoustic model (8) was trained (6) using
adult male clean speech data (1) from the Japanese Newspaper
Article Sentences (JNAS) speech corpus [10]. The adult male
clean speech data (1) were contaminated (4) by adding office
noise data (3) with a signal to noise ratio (SNR) of 5 dB and be-
came adult male noisy speech data (5). Then, using adult male
clean speech data (1), adult male noisy speech data (5) and adult
female clean speech data (2), we trained (7) an adult male clean
GMM (9), an adult male noisy GMM (10), and an adult female
clean GMM (11), respectively.

We used 100 Japanese city name speech data from The
Japan Electronic Industry Development Association’s Common
Speech Data (JCSD) corpus (LDC96S64) [11] to train a Max-
Ent and to evaluate the proposed method based on the MaxEnt.
75 adult males and 75 adult females were divided into groups
of 50 adult males and 50 adult females for the MaxEnt training
and 25 adult males and 25 adult females for the evaluation. 100
city names were divided into 50 IV city names and 50 OOV city
names. Based on the above divisions, we prepared 50 IV city
adult male clean speech data (12 and 16), 50 OOV city adult
male clean speech data (13 and 17) and 50 IV city adult female
clean speech data (15 and 19) for the MaxEnt training and eval-
uation purposes. In addition, 50 IV city adult male clean speech
data (12 and 16) were contaminated (4) by adding office noise
data (3) with an SNR of 5 dB and became 50 IV city adult male
noisy speech data (14 and 18). As a result, four sets of 100
city name speech data were prepared for the MaxEnt training
(12, 13, 14 and 15) and evaluation (16, 17, 18 and 19) purposes.
And by adding 3730 dummy city names, which were different
from the 50 OOV city names, to the 50 IV city names, a 3780
city name dictionary (24) was created for speech recognition.

Using the HMM (8), three GMMs (9, 10 and 11) and the
3780 city name dictionary (24), we performed speech recogni-
tion and (x,y) pair collection procedures (20) for the four sets
of 100 city name speech data for the MaxEnt training (12, 13, 14
and 15), and obtained speech recognition results and the pairs

of x and y; {(xm,ym)}9607m=1 (21). We defined x as the 11-
dimensional feature vector shown in the table in the bottom left
of Fig. 2. The 0-th feature “likelihood ratio of the recognized
word and the phonetic typewriter” is a conventional confidence
measure [12]. With reference to [13, 14], we defined 840 fea-
ture functions (25), which executed the nonlinear quantization
of each element in x with the number of bins shown on the
right-hand side of the table. We used these feature functions
(25) and the pair data {(xm,ym)}9607m=1 (21) to estimate (22)
the set of weights {λk}840k=1 of the MaxEnt (23).

In the evaluation, we used the HMM (8), three GMMs (9,
10 and 11) and the 3780 city name dictionary (24) to perform
speech recognition and x collection procedures (26) for the four
sets of 100 city name speech data for the evaluation (16, 17, 18
and 19), and obtained speech recognition results and {xn}4796n=1

(27). Then using {xn}4796n=1 (27), we obtained the corresponding
{yn}4796n=1 with conditional probabilities {p(yn|xn)}4796n=1 (29)
by using the discrimination processes (28) of the MaxEnt (23).

We trained the HMM (8) and three GMMs (9, 10 and 11)
and performed the speech recognition by using SOLON [15]. As
described above, this time there were closed conditions, namely
that the office noise data (3) used for contamination (4) and the
50 OOV city names were the same in the MaxEnt training data
(13 and 14) and the evaluation data (17 and 18).

4.3. Experimental result
The left hand side of Fig. 3 shows the receiver operator char-
acteristics (ROC) curve of the confidence estimation accuracy
obtained with the proposed method for all the evaluation data.
When plotting this ROC curve, we focused solely on the value
of y0, i.e. correct (y0 = 0) or incorrect (y0 = 1) and ignored
the values of the remaining three elements yd(d = 1, 2, 3),
which denote the nonexistence (yd = 0) or existence (yd = 1)
of the three error causes. This ROC curve is plotted by vary-
ing the acceptance / rejection threshold continuously from 0.0
to 1.0 and comparing it with the conditional probabilities of y
(29). For comparison, we also plot the confidence estimation
accuracy of the 0-th element of x, i.e. the conventional confi-
dence measure “likelihood ratio of the recognized word and the
phonetic typewriter [12]” in Fig. 3 (left). It is clear that the con-
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Table 3: Confidence and error cause estimation EERs with the phonetic typewriter based method and the proposed method.
Word Recog. Phonetic typewriter ProposedSet of the evaluation data

Rate [%] Conf. est. EER [%] Conf. est. EER [%] Err. cause est. EER [%]
All 52.48 28.93 22.88 25.59
(16) 50 IV city adult male clean 86.06 26.76 26.61 51.74
(17) 50 OOV city adult male clean 0.00 — — 14.71
(18) 50 IV city adult male noisy 68.07 26.32 23.97 32.32
(19) 50 IV city adult female clean 57.10 40.25 34.00 29.25

fidence estimation accuracy of the proposed method is higher
than that provided by the phonetic typewriter based confidence
estimation method. The absolute improvement is about 6% in
terms of the equal error rate (EER).

Table 3 shows confidence estimation EERs of the phonetic
typewriter based method and the proposed method for all of the
evaluation data and the four sets of the evaluation data (16, 17,
18 and 19). Word recognition rates are also shown. It is im-
possible to calculate the EER for the 50 OOV city adult male
clean speech data (17) because it is impossible to calculate the
false rejection rate for this data. This table confirms that the im-
provement in the confidence estimation accuracy provided by
the proposed method compared with that of the phonetic type-
writer based method is mainly obtained for the 50 IV city adult
female clean speech data (19). We assume that this improve-
ment is obtained as a result of the effect of the female GMM
(11) used in the proposed method.

The right hand side of Fig. 3 shows the ROC curve of
the error cause estimation accuracy obtained with the proposed
method for the evaluation data whose recognition results are es-
timated as incorrect (y0 = 1) by the proposed method itself.
This ROC curve is also plotted by using the same thresholding
procedures used for plotting the ROC curves in Fig. 3 (left). As
shown in this figure, we obtained an EER of about 26% in terms
of error estimation accuracy.

Table 3 shows the error cause estimation EERs of the pro-
posed method for the evaluation data whose recognition results
are estimated as incorrect (y0 = 1) by the proposed method,
and its four sets corresponding to (16), (17), (18) and (19).
This table confirms that error cause estimation for the 50 IV
city adult male clean speech data (16), i.e. the estimation of
y when it takes ID=8 in Table 2, is very difficult. This is be-
cause the amount of training data when y takes ID=8 was very
small and the MaxEnt was not well trained to estimate this case.
However, as described in Section 4.1, ID=8 has the potential to
play an important role, thus we have to improve the estimation
accuracy. We also confirmed that the error cause estimation ac-
curacy for the 50 OOV city adult male clean speech data (17)
is very high. However, this high accuracy is obtained because
of the closed condition whereby the 50 OOV city names are the
same in the MaxEnt training data (13) and the evaluation data
(17) as described in Section 4.2. It has been reported that OOV
word detection is an essentially more difficult task [5].

5. Relationship with other work
The proposed method can be categorized with recently reported
confidence estimation methods, e.g. [13, 14], which are based
on discriminative models and use many features of the recogni-
tion results.

The proposed method can be incorporated in spoken dia-
logue systems [6] and used to develop more sophisticated dia-
logue strategies.

The proposed method is also related to analyses of speech
recognition errors, e.g. [16, 17, 18]. In these studies, based
on the assumption that misrecognitions are mainly attributable
to the weaknesses of the speech recognition engines, detailed
analyses are conducted mainly for utterances that should be
correctly recognized but that are misrecognized. In contrast,
the proposed method does not analyze but detects error causes
for any input utterances assuming that misrecognitions are at-
tributable to both the weaknesses of the speech recognition en-
gine and improper operation by users (in the system construc-
tion stage, failures by system developers could cause errors).
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Figure 3: (Left) Confidence estimation ROC curves of the
phonetic typewriter based method and the proposed method.
(Right) Error cause estimation ROC curve of the proposed
method.
Therefore, it is expected that error cause detection with the pro-
posed method could constitute the preprocessing of the detailed
error analysis of the existing error analysis methods.

6. Conclusion and future work
We proposed a method for simultaneously estimating the confi-
dences and error causes of speech recognition results using dis-
criminative models, and confirmed its promising performance
in an initial speech recognition experiment.

We are planning to undertake the following studies: First,
we will fix the closed experimental conditions with respect to
the office noise data and 50 OOV city names described in Sec-
tion 4.2. Second, to relax the limited assumption described in
Section 4.1, we will assume the condition that there could be
more than two error causes at a time. Under this condition, the
estimation procedure is formulated as a multi-category labeling
problem [19]. Third, we will improve the estimation accuracy
of the proposed method by devising better estimation strategies.
For example, we can prepare individual discriminative models
for confidence estimation and each error cause estimation re-
spectively, and merge their estimation results to form a final es-
timation result. Finally, by using the proposed method, we will
develop a discriminative training technique for acoustic mod-
els [20] that explicitly takes the error causes in the competing
recognition hypotheses into account.
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