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Abstract
In this study, we explore a human benchmark in language

recognition, for the purpose of comparing human performance
to machine performance in the context of the NIST LRE 2007.
Humans are categorised in terms of language proficiency, and
performance is presented per proficiency. The main challenge in
this work is the design of a test and application of a performance
metric which allows a meaningful comparison of humans and
machines. The main result of this work is that where subjects
have lexical knowledge of a language, even at a low level, they
perform as well as the state of the art in language recognition
systems in 2007.

1. Introduction
1.1. Human Benchmarking
For any automated task, we should also ask ourselves what is
the quality of performance of machines as compared to that of
humans. This paper looks at human benchmarking for the task
of language recognition, that is, establishing the level of human
performance in a machine task. With such a benchmark, we can
assess the level to which technology can aspire.

There are many issues in conducting human benchmarking
of language recognition systems, such as training, test sample
duration, learning affect and fatigue. These issues, as well as
a review of other work in the field, can be found in our earlier
work [1]. This work reports a pilot study, which was carried out
in the Netherlands using NIST LRE 2005 evaluation material in
7 languages. One of the findings was that greater proficiency in
a language produced better performance in the language iden-
tification task. We suspected that there might be a significant
improvement in performance where subjects had lexical knowl-
edge of a language, rather than just some exposure.

Where other researchers [2] found a learning effect, we did
not. We believed this to be because of the limited number of
trials and the lack of feedback during the experimental sessions.

Finally, we observed that there was an imbalance between
misses and false alarms, indicating that subjects tended to de-
cide that trial speech segments were not from the target lan-
guage more than that they were. This happened, despite efforts
to help them to balance their answers by telling them that 50%
of the trials were from the target language.

In this study, we address these questions using the 14 lan-
guages of NIST LRE 2007 [3] in a human benchmark where
we compare human performance to machine performance for a
number of systems from the NIST LRE 2007 submissions.

2. Human benchmark experimental design
While subjects in the original study were asked to rate their pro-
ficiency in each language, the rating was done on a scale of 1

to 5, and gave no information about the type of exposure to the
language that they had. For the follow-up design, subjects were
classified as to their proficiency in each language. This was
done by self-assessment on behalf of the subjects so that they
could be classified in one of 5 intuitive groups, ranging from
no exposure to a language to native proficiency. While we still
would not have control over the actual training data, we could
have some information about relative training in each of the 14
languages. From the results of the pilot study, and as a result of
these changes, we expected to find that lexical knowledge of a
language would be an important factor in human performance
as well as the experienced degree of difficulty.

The design was also changed such that subjects were tested
on only one target language per session, whereas in the pilot
study, the languages were distributed across subjects. By chang-
ing the design in this way, we intended to make it easier to focus
on the task, and so to be able to introduce more trials. Further-
more, we wanted to focus on performance as a function of pro-
ficiency, which was made easier by this change. We decided not
to give feedback during the test as we did not want a learning ef-
fect to interfere with the categorisation of language proficiency
that the subjects had provided.

Finally, for the current study, more attention was paid to the
subjects’ awareness of the information about the prior, to see if
it affected their decision-making. Not only were they explicitly
given the information, and reminded of it throughout, but we
also asked afterwards, for every subject, if and how they used
this information.

3. Methods and Materials
3.1. Subjects

Subjects were taken from the student and faculty body both in
Berkeley, California and in Utrecht, the Netherlands. There
were 108 subjects in total, 81 female and 27 male.

3.2. Language Proficiency

In order to test the prediction of performance in the experimen-
tal task, as related to training, we asked subjects to classify their
proficiency in each of the 14 languages.

Five proficiency categories were chosen, namely no expo-
sure, some exposure, fair non-native, fluent non-native and na-
tive. Subjects were asked, by means of a questionnaire, to esti-
mate their own ability in each of the 14 languages, using these
5 categories.

The last two categories are relatively self-explanatory. The
remaining three warrant some explanation.

The category fair non-native was described to subjects as
a language which is not your native language, in which you
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are not fluent, and which you can use to carry out basic social
interactions such as meeting people, eating and drinking with
people, grocery shopping. Generally, it might be a language in
which you have taken a couple of university-level courses.

The category some exposure was described to subjects as a
language that you are familiar with but do not speak. This gen-
erally applies to languages that are (sometimes) present in your
environment but which you do not need for communication pur-
poses. Often, exposure like this derives from the media, regular
holiday destinations, or simply your living environment.

The category no exposure was described to subjects as a
language that you don’t think you would recognize easily if you
heard someone speaking it, and to which you have had no direct
exposure.

The difference between the categories fair non-native and
some exposure was intended to differentiate between presence
and absence of lexical knowledge.

The distribution of subjects across language proficiencies
and target languages is shown in Table 1 below. For some lan-
guages, for example, English, not all proficiencies could be rep-
resented because of the language environments in which the ex-
periments were carried out.

Table 1: Table showing the proficiency of subjects for each of
the 14 NIST LRE-2007 languages.

none some fair fluent native
arabic 2 4 3 0 2
bengali 3 2 1 0 0
chinese 1 1 2 2 8
english 0 0 3 22 18
farsi 2 1 0 0 2

german 3 4 4 2 2
hindustani 3 3 2 2 1
japanese 2 1 5 1 0
korean 3 5 1 2 0
russian 3 3 2 1 2
spanish 3 2 3 2 3
tamil 2 2 1 0 2
thai 5 3 0 0 4

vietnamese 4 2 2 0 2

Some subjects were proficient at different levels in more
than one of the 14 languages. Such subjects could participate
in multiple experimental sessions, but then in a different lan-
guage each time. The order of participation depended on the
proficiency levels, and such sessions were run from lowest to
highest exposure. In this way, subjects did not get extra acous-
tic exposure to a language, which could affect the proficiency
category that they had assigned themselves.

3.3. Task and material
The task for the humans is that of language detection, similar to
the machine task in the NIST LRE context, with a closed set of
non-target languages. For a given target language, the subjects
were presented speech excerpts of around 10 seconds duration,
and they had to decide whether each excerpt was spoken in the
target language or not. Besides making a decision, subjects had
to indicate a confidence level for their decision on a scale of 1
to 5, where 1 was very uncertain and 5 was certain.

Apart from being able to play the test trial speech, sam-
ple speech from any of the 14 languages was also available to

the subjects for reference or training, for both male and female
speakers. Subjects were allowed to play the trial sample and
any of the training samples as often as they wished. They did
not have to finish a sample before making a decision or before
playing another sample, and each time that sample speech was
requested, a new speaker was presented. The training segments
were drawn from the CallFriend database augmented with LRE-
2007 development test data.

A single experimental session consisted of one combination
of subject and target language. Within a session, 160 trials were
presented, in random order. The speech was taken from the
NIST LRE 2007 evaluation, 10 sec condition. All 80 target tri-
als for a language were included in a session, and 80 non-target
trials were drawn randomly from the alternative 13 languages.
Thus, the evaluation priors were 1

2
. This was explicitly stated in

a briefing before every session.

Before the session started, instructions were given on the
screen, and a small test with only English and Spanish samples
was run for familiarization with the user interface.

4. Analysis and Results

4.1. Performance metric

In order to make human and machine performance results com-
parable, we use the same metric as in NIST LRE, i.e., Ci

det, the
cost of detecting language i

Ci
det = CmissP

i
missPtar + CFA

∑

j �=i

P j
nonP

ij
FA. (1)

Here Cmiss and CFA are normalized cost parameters, set by
NIST to unity in the evaluation, and Ptar the prior probabil-
ity for target language i that must be considered in the decision.
This has been set by NIST to 1

2
in the evaluation. Finally P j

non

is the prior probability that the test segment is in a non-target
language j. This has been set by NIST to (1−Ptar)/(M − 1),
where M is the number of test languages, here 14. The error
probabilities P i

miss and P ij
FA are determined from the experi-

ment. P i
miss is the proportion of true trials in language i where

the subject’s decision was ‘no,’ and P ij
FA is the proportion of tri-

als with the target language i and test segment language j where
the decision was ‘yes.’

4.2. Overall results

We calculated Cdet for each session, that is, each combination
of subject and target language. Since the subjects’ proficiency
is known for each language, we can plot the distribution of
Cdet over subjects and languages for each proficiency, i.e., over
columns in Table 1. This is illustrated in Fig. 1. It is clear that
language proficiency has a strong influence on the detection per-
formance for that language. The values of Cdet averaged over
proficiency are tabulated in Table 2.

Table 2: Average Cdet over sessions with the same language
proficiency.

Proficiency none some fair fluent native
Cdet (%) 28.0 15.8 5.44 3.00 2.05
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Figure 1: Boxplots for the values of Cdet per session, pooling
target languages and subjects.

4.3. Performance per target language
We can obtain more detailed information by showing the Cdet

per language, for each of the language proficiency levels. In
Fig. 2 we have plotted the ranges of Cdet per language for the
native speakers, i.e., from sessions in the last columns of Ta-
ble 1. Although the number of sessions per language in this
condition is small, 0–8 (with an exception of 18 for English) we
do get an impression of the variability along languages. Chi-
nese has the relatively high error rates, even for native listeners,
which is not unexpected given that we used the NIST LRE 2007
interpretation of “Chinese” being one of Wu, Min, Cantonese
and Mandarin—which are really different languages. Similarly,
we may expect that errors in English detection for native En-
glish listeners may have occurred in the trials containing Indian
English. We analyzed the errors made for sessions with English
as the target language in Table 3, and indeed, misses typically
arise out of Indian English. It is unclear why there are relatively
many false alarms for Hindustani, Farsi and Vietnamese, but we
know that code-switching in and out of English was reported by
some subjects.

4.4. Comparison to machines
In order to compare the main results to machine performance,
we have sampled the set of language recognition systems that
participated in LRE-2007 at three points. In Table 4 the perfor-
mances of 3 systems is given, and because it is not customary
to present absolute ranks in NIST evaluations, we’ve hinted at
the system’s quality by indicating the year of first participation
in the series.

The table reports two values of Cdet, one obtained using all
trials in LRE-2007, and one using the same set of trials that the
human subjects judged. The difference between the two values
does not exceed 10%.

The ultimate comparison is that of the systems, generally,
to humans. We do that in a graph similar to Fig. 1, but including
the three systems as if they represent their own “proficiency lev-
els.” We have done this in Fig. 3, where the performance vari-
ability within a system is due to the different target languages.
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Figure 2: Human performance per target language, for subjects
native in the target language. Shown are ranges of Cdet per
subject, using box plots.

Table 3: Analysis of the errors made for sessions with En-
glish as the target language. Languages/accents not mentioned
caused no errors

Misses
Accent fair fluent native
american 1 8 3
indian 9 40 11

False Alarms
Language fair fluent native
arabic 0 0 1
bengali 0 2 1
farsi 1 14 8
german 0 0 2
hindustani 0 18 14
japanese 0 1 0
korean 0 2 0
russian 1 1 0
spanish 0 1 0
thai 0 1 0
vietnamese 0 5 0

Table 4: System performance for three of the systems that par-
ticipated in LRE-2007, 10 second trial condition. ‘All’ indicates
inclusion of all trials, i.e., official results, ‘hum’ means that only
the 160 trials used in this human benchmark are considered.

System First LRE Cdet(all) Cdet(hum)
MIT 1996 0.0363 0.0391
TSS 2005 0.0702 0.0765
ICSI 2007 0.123 0.120

From the figure, we way conclude that the state of the art
of language recognition systems in 2007 is close to a human
language proficiency of “fair,” as defined in Sect. 3.2. This can
be considered the main result of this study.
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Figure 3: Comparison of Human language recognition perfor-
mance to Machine performance, for 5 different proficiency lev-
els of humans and 3 different systems.

4.5. False alarm/miss imbalance
One of the outcomes of earlier research [1] was the apparent im-
balance in decisions: subjects tend to produce more misses than
false alarms. In Fig. 4 we show the individual (PFA, Pmiss)
pairs for each of the sessions, where the symbol encodes the
proficiency level.We find that there are more sessions (38 out
of 178) where PFA < Pmiss at rather than vice versa (4 ses-
sions). These results were obtained from a Test of Proportions
at p < 0.05. Aggregated over languages, PFA < Pmiss for all
target languages except English and Spanish. We note that for
English, all subjects were proficient at a level that included lex-
ical knowledge. We further note that Spanish is the second lan-
guage of California, where most of the sessions were conducted.
Averaged over all sessions, PFA = 0.0804 vs. Pmiss = 0.180.

5. Discussion and Conclusions
We have extended our earlier work on a human benchmark in
language recognition in 7 languages, using NIST LRE-2005
data [1], to a large scale experiment using the 14 languages in
LRE-2007. We have attempted to control for the most important
human factor, namely proficiency in the target language, and we
observe a performance that increases rapidly as lexical knowl-
edge is introduced into language proficiency. Comparing hu-
mans to machines, using the same speech trials and evaluation
measure, we can say that state of the art machine performance in
2007, for 10 s speech segments, is comparable to humans with
fair knowledge of the target language.

We further see that despite our efforts to control the decision
threshold of subjects towards a balance in Pmiss and PFA, there
is still a strong tendency for subjects to have PFA < Pmiss. One
possible explanation is that with 13 non-target languages, it is
cognitively difficult for subjects to give these the same prior
weight as the single target language. Another explanation is
that it is harder to judge a language as “same”, when there are
obvious difference in test and trial samples in terms of words,
speakers and gender.
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Figure 4: Errors per session, expressed in PFA and Pmiss, using
probit-warped graph axes as is customary for DET plots.

Given that, as soon as a listener can make use of more
than just acoustic cues, the performance increases substantially,
it would seem necessary to investigate system improvements
which could take linguistic aspects into account. One might
think of, for example, language specific voice quality features,
fillers and pauses and perhaps syllable and word level features.
This would be quite some challenge to system designers, but it
seems that such strategies might yield good results, if human
performance may be taken as an indicator.

It is difficult to know whether the category no exposure can
really be tested with this language set. Most of the subjects
will have been exposed to the 14 languages via film, music,
television, or people that they know who have a background
in the cultures in which the languages are spoken. It would
be interesting to test this category more thoroughly to see if it
is possible to establish a zero level of proficiency, using this
language set.
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