r~

37 /Interspeech.2009-

‘
¢

10.214

m

INTERSPEECH
2009 BRIGHTON

Time-Varying Autoregressive Tests for Multiscale Speech Analysis

Daniel Rudoy'?, Thomas F. Quatieri®, Patrick J. Wolfe'

'Harvard Engineering & Applied Sceinces, Cambridge MA, USA
2MIT Lincoln Laboratory, Lexington MA, USA

{rudoy, patrick}@seas.harvard.edu, quatieri@ll.mit.edu

Abstract

In this paper we develop hypothesis tests for speech waveform
nonstationarity based on time-varying autoregressive models,
and demonstrate their efficacy in speech analysis tasks at both
segmental and sub-segmental scales. Key to the successful
synthesis of these ideas is our employment of a generalized
likelihood ratio testing framework tailored to autoregressive
coefficient evolutions suitable for speech. After evaluating
our framework on speech-like synthetic signals, we present
preliminary results for two distinct analysis tasks using speech
waveform data. At the segmental level, we develop an adaptive
short-time segmentation scheme and evaluate it on whispered
speech recordings, while at the sub-segmental level, we address
the problem of detecting the glottal flow closed phase. Results
show that our hypothesis testing framework can reliably detect
changes in the vocal tract parameters across multiple scales,
thereby underscoring its broad applicability to speech analysis.

Index Terms: TVAR models, hypothesis testing, GLRT, adap-
tive speech segmentation, glottal flow analysis

1. Introduction

It is widely accepted that speech is well-modeled as locally-
stationary random process owing to the temporal variation of
the glottal source and the vocal tract. Moreover, it is also known
that explicitly taking advantage of this variability in front-end
processing leads to superior algorithms in applications such as
enhancement and recognition. Most analysis algorithms, how-
ever, simply break up the speech signal into 15 — 30 ms short-
time segments instead of taking advantage of the continuous
evolution of vocal tract parameters or, more generally, the time-
varying speech spectrum. Here, we take a first step in this di-
rection by proposing a statistical model for vocal tract dynamics
and using it to identify regions of speech in which the vocal tract
configuration is not changing (e.g., steady-vowels and the glot-
tal flow closed phase). This, in turn, can be applied to higher-
resolution spectral estimates of steady-state harmonic content
and improved inverse filtering algorithms, respectively [1,2].
Motivated by the linear source-filter model of speech pro-
duction, earlier work in this direction included hypothesis test-
ing to find stationary speech segments by fitting an autore-
gressive (AR) process with piecewise constant parameters to
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the speech signal as described by [3] and references contained
therein. However, in reality, the vocal tract configuration does
not go through a sequence of abrupt jumps, but is instead slowly
changing; hence modeling the resultant time-varying spectrum
using time-varying autoregressive (TVAR) models (see, e.g.,
[4, 5]) is more appropriate. In this setting, the question of
whether a signal is best described by an autoregressive or a
TVAR process was partially addressed using the Rao test [6],
but was not considered in the speech setting.

In this paper, we develop tests for spectral change based
on a TVAR model, and use it to demonstrate improved speech
analysis capabilities on both segmental and sub-segmental time
scales. We model the temporal variation of the vocal tract
through the use of TVAR models as described in Section 2,
and propose in Section 3 to use a generalized likelihood ra-
tio test (GLRT)—to detect changes in the vocal tract parame-
ters. After evaluating the detection performance of the test on
synthetic signals, we use it to design a novel adaptive analy-
sis scheme based on the short-time Fourier transform (STFT) in
Section 4.1, building on our earlier work in [1], and demonstrate
its applicability to speech analysis on a segmental scale. In Sec-
tion 4.2, we provide empirical results of using the GLRT on a
sub-segmental scale—to detect the glottal flow closed phase.

2. Modeling of Nonstationary Signals
2.1. Time-Varying Autoregressions: Modeling

An autoregressive, or linear predictive, formulation for speech
time series forms the basis of many successful algorithms to
date. Typically an AR model is fit to acoustic data on a per-
segment basis (following application of a smooth window func-
tion), thus enabling piecewise variation in parameter estimates.
However, a more flexible alternative is to let the autoregres-
sive coefficients themselves vary independently of the analysis
scale; to this end, a time-varying autoregressive model of order
p is given by the following discrete-time difference equation:

P q
ailn] =) ai;fifnl. ()
j=0

z[n] = — Z a;[n]zn — i) + win],
i=1

where a;[n] are the time-varying autoregressive coefficients
whose deterministic temporal trajectory is represented in a pre-
determined basis of time-varying functions f; : N — R for all
1 <4 <p,0 < j < g weighted by coefficients a;; € R. The
input w[n] is zero-mean white Gaussian noise with E(w[n]?) =
o? for all n. Finally, we assume that fo[n] = 1 for all n—this
implies that if for all j > 0 the coefficients c;; are equal to
zero, then the TVAR model of (1) reduces to an AR model as:

z[n] = — Zaiox[n — ] + w[n].
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The choice of basis functions should ideally reflect prior knowl-
edge about the smoothness class of coefficient trajectories; in
practice, a variety of basis functions including Legendre and
Fourier polynomials have been considered [5]. We discuss their
relative merits below.

2.2. Time-Varying Autoregressions: Estimation

Let the vector at; = (j,...,ap;)" for 0 < j < g contain
all the weights of the j™ basis function and define the vector

T
7aq

0= (aOT, al ... )T to contain all the p(g+1) regression
coefficients. Here, we describe how to estimate 6 and o2, given
a vector of N observations x (x[0], z[1],..., [N —1]).

The least-squares estimator of @ is obtained by minimizing the

prediction error:
p q 2
0 = arg rngin z[n] + Z Z aijfiln]zn—1 | . (2
i=1 j=0

A detailed derivation is omitted for brevity and can be found
in [4,5]. Since w[n] is white Gaussian noise, then the above
estimator is also the (approximate) maximum likelihood (ML)
estimator of 0 for a finite number of observations and converges

to the ML estimator asymptotically. To estimate the noise vari-
ance o2, first note that:

DI

=1 j=0

E(z[n]z[n]) = (filn]z[n]z[n —d]) + o

Once we have solved for 5 we may estimate the gain by:

|z[n]) +ZZaw

=1 7=0

(fi[nlz[n]z[n —d]). (3)

In correspondence with the covariance of linear predic-
tions both expectations are approximated by a sum over
(z[p—1],...,z[N — 1]). We prefer the covariance method to
the autocorrelation method, since windowing dramatically af-
fects the estimated time-varying AR trajectories, especially for
short data records [4].

3. Testing for Nonstationarity

Assuming that nonstationarity in speech is well-modeled by
time-varying autoregressions, we turn to the problem of testing
the null hypothesis that a data record ¢ = (z[0], ..., z[N —1])
came from an AR(p) process against the alternative that it came
from a TVAR(p) process. This enables us to find stationary
speech segments by testing whether or not the AR coefficients,
and consequently the vocal tract resonances, are changing.
Since a TVAR process reduces to an AR process when ac; = 0
for all j > 0, checking whether a segment is nonstationary may
be accomplished by testing the hypothesis that all these parame-
ters are zero. Regrouping the TVAR model parameters {6,0 }
according to: {OlT;ag,Uz} {al,.. aq,ao, 2}
hypothesis test of interest is given by:

Ho
Hi

: (Bl;ao,az) = (Opqxl;amUQ)
: (91§010,U2) # (Oqul;ao,U2)‘

A number of different test statistics may be used to realize the
hypothesis test of (4). When parameter estimates under H; are

“
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difficult to compute (e.g., time-varying o), the Rao test can be
utilized [6]. However, since o2 is time-invariant and ML esti-
mates of all model parameters are available, we employed the
GLRT because it tends to outperform the Rao test on finite data
records—a fact we have empirically confirmed—even though
the tests are asymptotically equivalent. Moreover, the GLRT
provides estimates of the time-varying AR coefficients, which
are useful in many speech analysis tasks.

3.1. Generalized Likelihood Ratio Test
The generalized likelihood ratio test statistic is given by:

p(ﬂ?, 5176076—\277-[1)

L = ———
G(w) p(m;a070—257—[0)

, &)

where, under #1, the maximum likelihood estimates (§17 Qo)
are obtained using (2) and o2 is given by (3). Under Ho, the
estimates ;o and o are found using the well-known covari-
ance method of linear prediction—the relevant equations are
obtained by setting ¢ = 0 in (2) and (3). In this composite hy-
pothesis testing setting, I () 2 2log Lg(z) is asymptotically
distributed (in the data length N) according to a chi-squared
density which is given by:

X2
fo(@) {xm)

with d = pq degrees of freedom and a non-centrality parameter
A that depends on the coefficients ayj, the basis functions f;
and is found in [6]. It is critical to note that, under Hy, the
asymptotic distribution of ¢ (2) depends only on the order of
the AR model being fitted and the number of time-varying basis
functions in the expansion of each AR coefficient. It does not
depend on the coefficients «;; or the basis functions f;, thereby
allowing us to set a constant false alarm rate (CFAR) threshold
v (e.g., 5% false alarm rate). Thus, using the test statistic given
in (5), we reject Ho if lg(z) > .

This analysis elucidates two factors which impact the test
sensitivity. Selecting basis functions that most closely model
the temporal trajectory of the TVAR coefficients tends to in-
crease the power of the test. However, this may require increas-
ing the number of basis functions ¢ (and, therefore, the degrees
of freedom), leading to a greater overlap between the distribu-
tions of the test statistic under both Ho and #1, thereby reduc-
ing the power of the test. Similarly, if the number of AR coeffi-
cients p is selected to be larger than what is necessary to model
the signal with high fidelity, the power of the test is reduced.

These observations have two crucial implications for ap-
plying the hypothesis test of (4) to speech. First, the power of
the test may be increased if the speech signal were bandpass
filtered in order to reduce the number of AR coefficients re-
quired to model the signal spectrum. (This amounts to using
side information as statistical “prior knowledge.”) For instance,
when identifying regions of change in the first two formants, it
is helpful to resample the signal down to 4 kHz and use 4 AR
coefficients instead of using 10 coefficients and working at the
original sampling rate of 10 kHz. Second, using a small set of
basis functions such as a line with a slope and constant offset
(¢ = 2) may be sufficient to detect change, even if not enough
to accurately model the coefficient trajectories.

under Hyp

under Hi,

3.2. GLRT Detection Performance

Consider an N-sample synthetic signal generated by filtering
white Gaussian noise through a two-pole bandpass filter with a
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Figure 1: ROC curves summarizing GLRT performance for dif-
ferent sizes of frequency jumps § and signal lengths N.

time-varying center frequency set to 7 /4 rad for the first N/2
samples and raised by 4 rad for the last N/2 samples; the band-
width was kept unchanged. A number of alternate hypotheses
corresponding to 6 € (7w/80, 37/80, 57/80, 77 /80) rad were
explored and § was set to O rad in order to generate data under
the null hypothesis (i.e., no change). Two time-varying poles
(p = 2), each expanded in a five-element Legendre polynomial
basis (¢ = 5), were used to conduct the hypothesis test, while
N was varied from 80 to 560 samples in 160 sample (10 ms) in-
crements. One thousand Monte Carlo simulations were done for
each combination of § and N from which ROC curves shown
in Figure 1 were computed. In agreement with our statistical in-
tuition, when ¢ is increased while N is fixed the detection per-
formance improves and vice versa—simply put, larger changes
and those occurring over longer intervals are easier to detect.

4. Applications to Speech Analysis
4.1. Segmental Analysis: Adaptive STFT

We recently proposed an adaptive STFT analysis-synthesis
scheme and applied it to signal and speech enhancement [1].
The adaptive STFT was obtained by merging certain adjacent
windows of an initial wideband fixed-resolution STFT resulting
in a variable-length window tiling of the signal. A nonpara-
metric time-frequency concentration measure was used in [?] to
decide which neighboring short-time segments to merge; here,
we use the parametric hypothesis test of (4) instead.

In order to implement this idea, the GLRT statistic of (5)
is computed for the joined segment to test if it is nonstationary,
and if the null hypothesis is rejected, the short-time segments
are not merged. However if the null is not rejected, then the
neighboring segments are merged. Thus, if the signal spectrum
is evolving due vocal tract changes (e.g., formant motion), and
assuming a constant fo, then neighboring windows will not be
merged so that the estimated signal spectrum is not smeared.
But when the formants are constant (e.g., sustained vowel),
neighboring windows are merged resulting in longer windows
which improves spectral resolution. In the context of speech
denoising (e.g., via Wiener filtering), such adaptation leads to
reduction of musical noise in enhanced speech [1].

We apply the TVAR-based adaptive analysis scheme to
two whispered utterances: a vowel followed by a diphthong
([a al]) and a steady-state vowel followed by a plosive ([i t]),
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both recorded at 16 kHz and containing a slowly-varying and
rapidly-varying spectrum, respectively. Note that whispered
speech is consistent with the assumption in the TVAR model
of a white innovations sequence. The results of applying the
TVAR-based adaptive STFT analysis scheme to the first utter-
ance resampled down to 4 Khz are shown in Figure 2(a). The
adaptive analysis shows that the GLRT is sensitive to formant
motion. Regions in which the first two formants are not mov-
ing, such as the vowel at the beginning of the waveform, are an-
alyzed using long windows, whereas the region containing for-
mant transitions, at the beginning of the diphthong, is analyzed
separately. The relatively slow change in motion of the first two
formants explains why a number of windows are joined in the
transitory region of the diphthong, however, change is detected
once enough data are observed. Thus, the framework performs
as expected, detecting the slowly changing formants only once
enough data has been examined. We have empirically observed
this segmentation to be robust to not only reasonable choices of
p and ¢, but also to sampling rate and the size of the initial win-
dow length—we have chosen to show the result for a sampling
rate of 4 kHz for clarity.

A second, equally important, example shows that the GLRT
framework can be effectively applied to detecting plosives.
Even though the onset of spectral change is fast, we are able to
detect it with high temporal resolution since the change is large
(as compared to, e.g., the relatively slow change in the spectrum
of the diphthong). The results of applying the adaptive scheme
to the whispered utterance [i t] are shown in Figure 2(b). Not
only does the vowel /i/ get a long window and the plosive /t/
a short one—to improve spectral resolution and prevent smear-
ing, respectively—but also the silence before and the aspiration
after the plosive are isolated.

4.2. Sub-Segmental Analysis: Closed Phase ID

Detecting spectral change is easier with more data (see e.g.,
Section 3.2), however, speech analysis tasks at a sub-segmental
scale, such as finding the glottal closed phase—useful in in-
verse filtering and speaker identification [2]—often suffer from
a paucity of data. However, we demonstrate that the GLRT can
be effective even on this scale by using it as part of a novel ap-
proach to identifying the closed phase. Specifically, it is well-
known that while the vocal tract parameters are relatively con-
stant during the closed phase, they undergo change at the be-
ginning of the open phase [2]; therefore, we can test the ability
of the GLRT to detect this boundary. We evaluate the approach
on four vowels, spoken by a male with an average fundamental
frequency of 109 Hz, synchronously recorded with electroglot-
tograph (EGG) signal, which we use to obtain “ground truth.”
An excised segment of the vowel /a/ and the corresponding
EGG derivative are shown in the top- and bottom-left panels of
Figure 3. A 50-sample rectangular window left-aligned with the
second peak in the EGG derivative and, at each iteration of the
sequential testing scheme, was moved one sample to the right.
The GLRT with p = 4, ¢ = 2 was performed for each window
location—the test statistic I (z) is shown in the bottom-right
panel of Figure 3 along with an 15% CFAR threshold . When
la(x) exceeds ~, the procedure is stopped and the region from
the start of the first window (glottal closure) to the end of the
last window (glottal opening), marked by a dashed black line
in all the panels, is declared to contain the closed phase. As
the top-right panel shows, the point at which the closed phase
is determined to end corresponds to marked change in the AR
coefficients due to both a change in the frequency/bandwidth of
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Figure 2: Fixed (top) and adaptive (bottom) segmentations of two waveforms shown along with their spectrograms, computed using
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Figure 3: Glottal flow analysis with TVAR-based GLRT. The
dashed black line shows the determined instant of change in
vocal tract parameters signifying the end of the closed phase.

the first formant resulting from nonlinear source-filter interac-
tion [2] as well as the increase in the glottal flow at the start of
the open phase. Finally, the dip in the EGG derivative, often
indicating the end of the closed phase [7], coincides with the
output of the algorithm.

Further evaluation was done by computing the root mean-
square error (RMSE) between the detected end of the closed
phase and dips in the EGG derivative over 100 periods in each
vowel; all parameters were as in the above example. The RMSE
for the vowels /a/, /e/, /i/ and /o/ was found to be 0.69, 1.31,
0.95 and 1.17, respectively—their small magnitude (relative to
the pitch period) underscores the promise of the approach.
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5. Discussion

We have developed a hypothesis test, based on a TVAR model
for the speech spectrum, to detect regions during which the
vocal tract parameters are not changing and applied it to speech
analysis problems on the segmental and sub-segmental scales.
In future work, we will use the GLRT to detect vocal tract
changes in voiced utterances as well as glottal closure instants.
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