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Abstract

We have proposed a novel probabilistic approach to concate-
nation modeling for corpus-based speech synthesis, where the
goodness of concatenation for a unit is modeled using a con-
ditional Gaussian probability density whose mean is defined as
a linear transform of the feature vector from the previous unit.
This approach has shown its effectiveness through a subjective
listening test. In this paper, we further investigate the charac-
teristics of the proposed method by a objective evaluation and
by observing the sequence of concatenation scores across an ut-
terance. We also present the mathematical relationships of the
proposed method with other approaches and show that it has a
flexible modeling power, having other approaches to concate-
nation scoring methods as special cases.

Index Terms: speech synthesis, unit selection, join costs

1. Introduction

It is crucial to establish a good concatenation cost for the qual-
ity of concatenative speech synthesis and there has been a num-
ber of research efforts to find a good measure of concatenation
cost[1, 2, 3, 4], in which various spectral feature parameters and
distance measures are investigated. There also is a research ef-
fort to find optimal mapping functions from distance measures
to costs based on perceptual evaluation [5]. In a previous pa-
per, we departed from the traditional view of cost based on
“distance” and attempted to take a probabilistic view of con-
catenation cost where concatenation modeling is done with a
probabilistic model that captures how likely it is to observe the
spectral shape of the current unit given the spectral shape of the
previous unit, using conditional Gaussians [6]. We performed a
subjective listening test and confirmed the effectiveness of the
proposed method [6].

In this paper, we further investigate the characteristics of
the proposed method by an objective evaluation comparing the
closeness of the synthetic speech samples to natural speech as
measured by the distance of MFCC parameter sequences. We
also look at the sequence of concatenation scores across an ut-
terance and see how it is behaving similarly or differently com-
pared to the baseline method. We also present the mathematical
relationships of the proposed method with other approaches and
show that it has a flexible modeling power, having various other
scoring methods as special cases.

In the next section, we summarize the proposed concatena-
tion modeling based on conditional Gaussians. Objective eval-
uation experiments are reported in the succeeding section, fol-
lowed by the section investigating the sequences of concatena-
tion scores for the correct’ unit sequence. We then explore the
mathematical relationships of the proposed method with other
methods followed by the conclusion.
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2. Concatenation modeling using
conditional Gaussian

We model the goodness of concatenation in terms of the prob-
ability that a spectral shape of a unit, o(u;)), is observed after
the previous unit in the phonetic context determined by the in-
put specification .S and the current unit position ¢, through con-
ditional Gaussian density,

P(o(us)|o(ui-1),S,1) P(h(us)|t(ui=1),S,1)

= N(h(ui)|Bt(ui-1) +b, ),

where d-dimensional vector h(u;) represents the average spec-
trum of an initial part (or head) of the unit u;, and the d-vector
t(u;) represents that of a final part (or zail) of the unit u;—1. B
is a d X d regression matrix with the j-th row representing a re-
gression coefficients for the j-th component of h(u;), and bis a
d-dimensional vector of intercepts, and X is a d X d covariance
matrix. B, b, and ¥ are determined by the phone identities of
the units w;and w;—1.

h(ui) .- h(ui)
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h(ui) is very similar to (ui-1). h(ui) almost independent of t(ui.1).
Figure 1: One-dimensional schematic diagram representing the
relationship between h(u;) and ¢(u;—1) in two extreme cases.

If we think about an extreme situation where spectral
shapes are very similar across the concatenation boundary, the
regression matrix B is considered to be close to identity matrix
and the constant vector b is close to zero, as shown in Fig. 1(a).
On the other hand, if the head spectrum is almost independent of
the tail of the preceding unit, the regression matrix B is consid-
ered to be close to zero and b will be the significant constituent
of the mean vector. In general cases between the two extremes,
B and b are considered to have some meaningful values that
represent u;’s characteristics that is dependent on u;—; in some
aspects and independent of it in some other aspects.
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2.1. ML estimation of conditional Gaussian model param-
eters

The maximum likelihood (ML) estimate of the model
parameters, B and b, from the training data D =
{(t1,h1), ..., (tn,hn)} is derived as a solution to a sim-
ple convex optimization problem. The training data D =
{(t1,h1), ..., (t~n, hn)} for a conditional Gaussian model for
a particular class of unit boundary (a phone pair, in the current
implementation with phone-sized units) consists of all the pairs
(tx, hi) of tail and head spectral feature vectors available from
the corpus for that class of unit boundary.

By defining a d X (d+ 1) matrix A and a (d + 1)-vector s;,
such that,

A=(vlB] wd s=| )]

we see a relationship Bt + b = Asy, and we obtain the esti-
mates of B and b from the estimate of A. The log likelihood £
of the training data D is, therefore,

=

L(A, ;D) 2 log | | N(hi|Ask, %)

k=1
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Taking the partial derivative of £ with regard to A,

oL 1 I
57 = {7 +3 7Y (hye — As)sT}
N
= 27N (i — Asy)sp
k=1

©))

By setting the partial derivative to zero, we obtain the ML esti-
mate of A,

A= (Z hksf)(z sest) L

4

The covariance matrix 3 can be estimated as the sample covari-
ance around the conditional mean A sy, and it reduces to

&)

Since the number of different combinations of tail phones
and head phones is roughly the square of the number of phones,
we may not have enough training data for some combinations
of tail and head phones, and this sparse data situation can vary
depending on how large the available training data is. In order to
achieve robust training of conditional Gaussians (CGs), we tie
the model parameters using phonetic decision-tree clustering.
The models are clustered according to the phonetic questions
about the tail phones [6].
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3. Objective evaluation experiments

In our previous paper [6], we demonstrated the effectiveness
of the proposed approach through a subjective listening test us-
ing a corpus-based speech synthesizer reported in [7], with Eu-
clidean distance as the baseline, which has been reported to be
a good predictor of perceived discontinuity when measured on
Mel-cepstral feature parameters [8]. In the test, eight subjects
listened to the speech synthesis output from two synthesizers,
one of which adopting Euclidean distance and the other with the
proposed conditional Gaussian (CG) models for concatenation
cost. They were asked to give scores of 1 to 5 to each utter-
ance. The results of the listening test is shown in Table 1. The
mean opinion score with the proposed method was significantly
higher than the baseline at the 1% level by the paired t-test.

Table 1: 5-level mean opinion scores for the two synthesiz-
ers [6].

CG
2.97

Euclidean
2.44

In this paper, we further investigate the effectiveness of the
proposed method through the evaluation in an objective way,
by comparing the closeness of the synthetic speech to natural
speech as measured by the distance of the MFCC parameter
sequence. The differences of the lengths of the parameter se-
quences were absorbed using dynamic time warping [9]. In
the closed part of the evaluation, a set of 29 prompt sentences
from the corpus for developing the synthesizer [6] was synthe-
sized using the baseline and proposed methods for concatena-
tion modeling. Fig. 2 plots the average distances between syn-
thetic and natural speech for the baseline (Euclidean distance)
and the proposed method (conditional Gaussian). Table 2 shows
the means and the standard deviations of the MFCC distances
for the baseline and the proposed approach. From the figure
and the table, we see that the proposed method achieves smaller
distance to natural speech. This difference turned out to be sta-
tistically significant at the 1% level.

Table 2: Test results for the closed data, i.e. training sentences.
’cg dists’ represents the proposed method that employs condi-
tional Gaussian-based concatenation models and "euc dists’ rep-
resents the baseline with Euclidean distance. Standard deviation
of the dtw distances are shown in the column headed by “s.d.”

number | mean | s.d.
cg dists 29 16.1 | 2.26
euc dists 29 17.7 | 0.98

We also performed an open test by synthesizing 50 conver-
sational sentences (categorized as conv ) used in the Blizzard
Challenge 2005 [10]. Fig. 3 plots the average distances between
synthetic and natural speech for the baseline (Euclidean dis-
tance) and the proposed method (conditional Gaussian) in the
open test. Table 3 shows the means and the standard deviations
of the MFCC distances for the baseline and the proposed ap-
proach. In the open case, the difference between the proposed
method and the baseline is smaller, but the proposed method
was still significantly closer to the reference natural speech at
the 5% level.

By comparing Fig. 2 and Fig. 3, we note that the distances
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Figure 2: Average MFCC distance between synthetic and nat-
ural speech for the baseline (green squares) and the proposed
approach (blue dots). The 29 points along the horizontal axis
represents the 29 utterances.

to the reference natural speech is smaller for the synthesized
speech of closed sentences with both Euclid distance (baseline)
and the conditional Gaussian (proposed), due to the fact that
the target and concatenation models are trained, as well as the
unit database was developed using the data set that includes this
reference natural speech. This also confirms that the distance
measure used here in the objective evaluation has an expected
characteristics.

We also note that the variance of the distances among sen-
tences for Euclidean distance is not very much different be-
tween closed data and the test data since this distance measure
is not based on a model estimated from the training data.

On the other hand, we note that the distance between the
synthesized speech and the reference natural speech gets very
small for some sentences (for example, the sentence 15 and the
sentence 27 in Fig. 2). A possible reason for this will be that
the feature vectors of synthesis units for these sentences hap-
pened to be very close to the values (i.e. means of the Gaussian
models) predicted by the target and concatenation models.

Table 3: Test results for the open data. "cg dists’ represents the
proposed method that employs conditional Gaussian-based con-
catenation models and ’euc dists’ represents the baseline with
Euclidean distance. Standard deviation of the dtw distances are
shown in the column headed by “s.d.”

number | mean | s.d.
cg dists 50 18.31 | 1.21
euc dists 50 18.48 | 1.13

4. A close look at the concatenation scores

In order to investigate the properties of the concatenation scores
in more detail, concatenation scores based on conditional Gaus-
sian models and Euclidean distance for a sequence of database
units that corresponds to one sentence are plotted in Figure 4.
For the ease of visual comparison, squares of the Euclidean dis-
tances are also plotted (red dots and solid lines.) This utterance
is also part of the training data for target and concatenation mod-
els.
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Figure 3: Average MFCC distance between synthetic and nat-
ural speech for the baseline (green squares) and the proposed
approach (blue dots). The 50 points along the horizontal axis
represents the 50 utterances.

Interestingly, by comparing the graphs for conditional
Gaussian model and Euclidean distance, wee see that the rough
trends are similar between the two concatenation score meth-
ods. One explanation for this similarity may be that diagonal
components in the transform matrix B are prominent in many
of the conditional Gaussian models and they are both influenced
by the goodness of the boundaries determined automatically by
the forced alignments using a speech recognizer.

On the other hand, we note that there are several points
where scores based on Euclidean distance has a big dip whereas
scores by conditional Gaussian does not have such a big dip,
e.g. transitions at 6 (-’ to ’ay’) and 49 ('n’ to ’s’). A natural
interpretation of this would be that it is unlikely to have a small
Euclidean distance between phones with very different spectral
shapes when the boundary assignment is accurate, whereas it is
possible to have a good score with conditional Gaussian models
since the conditional mean given by transforming the left unit
feature vector can have a shape similar to the right unit feature
vector.

5. Relationships with other approaches

The proposed concatenation score between the feature vector
from the left unit, ¢ and the feature vector from the right unit
h is a log probability given by the conditional Gaussian model
and expressed as

log N'(h|Bt + b, %)
= fglog%rf %log|2|

1

—§(h —(Bt+b)"S Y (h— (Bt+b), (6)

where the model parameters, B, b, and ¥ depends on the pair of
phone identities for the left and right units. The integer d is the
dimensionality of the vectors h and t. By comparing this equa-
tion with the formulas for other distance measures, we realize
that the proposed method has an interesting relationships with
other approaches.
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Figure 4: Plot of the concatenation scores for the “true” database units for the sentence “I followed the line of the proposed railroad,
looking for chances.” The blue dots with broken lines represent concatenation scores with conditional Gaussian models, the green dots
with dotted lines are concatenation scores that are the negatives of Euclidean distances, and the red dots with solid lines represent the
negatives of the squares of Euclidean distances. Scores are for concatenation of the unit at the dot and the one at the next dot.

5.1. Euclidean distance

Euclidean distance is a widely used distance measure and, as
mentioned in the previous section, it is reported to be a good
predictor of perceived discontinuity [8]. If we set the transfor-
mation matrix B to the identity matrix (/), the constant b = 0,
the covariance matrix X also to the identity matrix and neglect
the constant terms, we note that the negative of the score given
by equation (6) turns out to the square of the Euclidean distance
between h and ¢ that can be expressed as

Dewe = (h—t)" (h —t). @)

5.2. Donovan’s approach

In [3], Donovan proposed a distance measure between the vec-
tor e at the end of one segment and the vector s at the start of the
next segment. For this purpose, he clustered the pairs of frames
across the boundaries using decision tree by asking broad class
questions about the preceding and following phonetic identity
and the location of the boundary within the phone, and calcu-
lated the mean and the covariance matrix within each leaf of the
tree. He describes it “a decision-tree-based context-dependent
Mahalanobis distance”, which is expressed as

n 112
2 €i — Si — I
D=y e

i=1 z

®)

where n is the dimensionality of the data, y! is the i-th element
of the mean vector in leaf 1, o! is the i-th diagonal element of
the covariance matrix for leaf [.

Looking at the equations (6) and (8), we note that (6) be-
comes equivalent to (8) if we set B to identity matrix and neglect
the second term with the determinant of the covariance matrix,
also assuming that the elements of the feature vectors are in-
dependent to each other. In other words, Donovan’s distance
measure is similar to the conditional Gaussian-based concate-
nation model with conditional mean formed by just the addition
of the constant b and no transform by the matrix B.

6. Conclusion

In this paper, we presented our attempt of objective evalua-
tion for the concatenation modelling approach based on con-
ditional Gaussian, in which the proposed approach was shown
to yield synthetic speech closer to natural speech as measured
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by distance between MFCC sequences. We also observed the
sequence of concatenation scores across an utterance and con-
firmed that the characteristics of the model is reflected in the be-
havior of the scores for a “correct” unit sequence. We also pre-
sented the mathematical relationships of the proposed method
with other approaches and showed that it has a flexible mod-
eling power, having various other scoring methods as special
cases.
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