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Abstract

We propose a novel universal acoustic characterization ap-
proach to spoken language identification (LID), in which any
spoken language is described with a common set of fundamen-
tal units defined “universally.” Specifically, manner and place
of articulation form this unit inventory and are used to build a
set of universal attribute models with data-driven techniques.
Using the vector space modeling approaches to LID a spoken
utterance is first decoded into a sequence of attributes. Then, a
feature vector consisting of co-occurrence statistics of attribute
units is created, and the final LID decision is implemented with
a set of vector space language classifiers. Although the present
study is just in its preliminary stage, promising results compara-
ble to acoustically rich phone-based LID systems have already
been obtained on the NIST 2003 LID task. The results provide
clear insight for further performance improvements and encour-
age a continuing exploration of the proposed framework.
Index Terms: Language recognition, vector space modeling,
phonetic features.

1. Introduction

Automatic language identification (LID) is a process of deter-
mining the identity of the language spoken in a speech utter-
ance. Broadly speaking, LID approaches can be divided into
two main categories: spectral-based and token-based. The
spectral-based approach is purely acoustic and no linguistic in-
formation, such as phones or words, is used. Within this con-
text, spoken utterances are represented by sequences of feature
vectors, which collectively are used to train a collection of mod-
els such as Gaussian mixture models (GMM) (e.g., [1]). In
the second category, linguistic properties are exploited in ad-
dition to acoustic information. An utterance is first decoded
and segmented into a sequence of tokens; e.g., phones. Finally,
LID is performed by extracting scores from the resulting to-
ken streams. A successful example of this approach is parallel
phone recognition followed by language modeling (PPRLM)
[2]. It uses several language-dependent phone recognizers to
generate phone strings and multiple language-dependent lan-
guage models to compute phontactic statistics.

As pointed out in [1], the spectral-based paradigm is more
efficient and less computationally demanding than the token-
based approach, but it does not provide superior performance
to the token-based systems on the National Institute of Stan-
dards and Technology (NIST) Language Recognition Evalua-
tion (LRE) tasks. The token-based paradigm suffers two main
drawbacks: (1) labeled training data is needed to train the recog-
nizers, which is difficult for rarely observed languages or lan-
guages without orthography and a well-documented phonetic
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dictionary; and (2) the decoding phase can be time consuming.
To address these issues, several LID systems based on language-
independent acoustic phone models have been proposed. For
example, [3] builds a collection of 87 phone models from a mul-
tilingual telephone corpus, while [4] considers only the phones
that best discriminate between languages pairs. Meanwhile, [5]
proposes a clustering algorithm in an attempt to deliver a com-
mon set of phones for different languages. However, the com-
bined phone list generated from the limited set of initial lan-
guages usually does not necessarily cover new and rarely seen
languages. A possible solution was reported in [6] where a set
of universal acoustic segment models (ASMs) characterizes all
spoken languages.

Here we focus on the token-based approach and propose
an alternative universal acoustic characterization of spoken lan-
guages based on acoustic phonetic features, such as frication,
nasalization, etc. In this study, we refer to this set of features
as attributes. An advantage of using attribute-based units is
that they are more fundamental than phonemes, and they can
be defined “universally” across all languages [7]. Furthermore,
the training material available for several diverse languages can
be shared to build a single speech attribute recognizer, which
circumvents the problem of needing sufficient labeled data for
each language. Meanwhile, using attributes is intrinsically more
parsimonious than ASMs. For example, while hundreds of
ASMs are needed for a complete characterization of spoken
documents [6], the present work uses only 15 attributes. Finally,
since the number of these “spoken letters” is small, it is possible
to obtain a finer language model resolution such as high order
n-grams.

Although this is only a preliminary study on universal at-
tribute characterization of spoken languages for LID, promising
results have already been observed. Specifically, the results are
comparable to the best performance reported on the 30-second
NIST 2003 task when implementing a single phone tokenizer
trained on the “stories” part of the OGI Multi-language Tele-
phone Speech (OGI-TS)' corpus.

2. System Overview

A bag-of-sounds model can characterize spoken languages sim-
ilar to the way a bag-of-words model represents documents
in the popular latent semantic analysis (LSA) framework [8].
Therefore, LID systems can be realized as in the block diagram
in Figure 1 where a front-end processing module tokenizes all
spoken utterances into sequences of speech units using a uni-
versal attribute recognizer (UAR). This set of acoustic attribute-
based symbols represents a collection of shared speech units for

Uhttp://cslu.cse.ogi.edu/corpora/corpCurrent.html/
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Figure 1: Block diagram of LID system with UAR-frontend and
VSM-backend.

all spoken languages, and the sequences of alphabet characters
represent the text manifistations of spoken utterances. In addi-
tion, it is possible to define acoustic words by grouping multi-
ple acoustic alphabet characters. For example, a single token,
two tokens, or up to a sequence of n>>/ alphabet characters can
be used as acoustic words. In this study, their co-occurrences
are called unigrams, bigrams, and n-grams, respectively. Vec-
tor representations of spoken utterances (or documents) are ob-
tained by having each element of the vector characterize the
occurrence statistic of an acoustic word (or term). Given a col-
lection of training utterances a term-document matrix is cre-
ated and text categorization approaches are applied to model
each language by considering the training utterances from a
corresponding language to form a particular text topic or cat-
egory. Vector space models (VSM) then categorize unknown
utterances into one of a fixed set of spoken languages, i.e., per-
forming the operation of spoken language identification. This
VSM-based back-end language classifier is shown in the right-
hand side of the block diagram in Figure 1. The UAR-frontend
and the VSM-backend are further discussed in the following
sections.

2.1. UAR-Frontend

In the present work, manner and place of articulation attributes
provide a universal acoustic characterization of all spoken lan-
guages. As already mentioned, the main problem of the LID
paradigms based on language-independent acoustic phone mod-
els is the difficulty in extending the framework to cover new
and rarely seen languages. In contrast, speech attributes can
be defined “universally” across all languages. Phoneme-to-
attribute tables provide a mapping from phoneme transcrip-
tions to attribute transcriptions. Specifically, two phoneme-to-
attribute mapping tables were created for all of the six OGI-
TS languages; i.e., a phoneme-to-manner mapping table and
a phoneme-to-place mapping table. The phoneme-to-manner
mapping table has six items: vowel, fricative, nasal, approxi-
mant, stop, and silence. The phoneme-to-place attribute con-
sists of ten elements: coronal, dental, glottal, high, labial, low,
mid, palatal, silence, and velar.

Once the mapping tables are defined, the OGI-TS phoneme
transcripts are converted into two different streams of articula-
tory attributes, which are used to train, validate, and evaluate
both a manner and a place recognizer. These recognizers are
built within the hidden Markov model (HMM) framework. Ad-
ditional details on the design and performance of the recogniz-
ers are given in Section 3.2.
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2.2. VSM-Backend

At the output of the UAR-Frontend are two sets of attribute-
based transcriptions. Specifically, manner-based and place-
based transcriptions representing speech documents are pro-
duced for each speech utterance. Each transcription is converted
into a vector-based representation by applying LSA [8]. These
document vectors are then used to train vector-based spoken
language classifiers (i.e., SVM).

LSA is a three step procedure. First, a term-count vector is
created by counting the number of times each term appears in
the speech document. A term may consist of a single attribute
(i.e., unigram), an ordered pair (i.e., a bigram), an ordered triplet
(i.e., trigram), etc. It is here that the manner and place transcrip-
tions are merged by concatentating the manner-based count vec-
tor and the place-based count vector for the same utterance. The
term-document matrix, W = {w; ; }, [8] consists of weighted
count values given by
Tt log By
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where n;; is the number of times term ¢ occurs in document
7, and n;. is the number of times that term ¢ appears in the N
training documents, and n_; is the number of terms in document
7. This measure is close to zero if the given term has a uniform
distribution throughout the database, but is close to one if the
occurrence distribution is skewed to only a few documents.

The term-document matrix has a dimension size of M X N.
In general, M equals to the number of unit occurence statistics
used, i.e. unigrams, bigrams, trigrams, 4-grams, etc. Therefore
M = p+ p? + p® + p*, where p is the number of attributes.
For manner and place, this resulted in M,,, = 1554 and M, =
11110, respectively, for a total of M = 12664. Furthermore,
the term-document matrix is quite sparse since many higher-
order n-grams do not appear in training documents. Therefore,
the final step of LSA uses singular value decomposition (SVD)
to reduce the dimensionality and improve the sparsity problem.
Specifically, the matrix W is decomposed by W = USV7.
Retaining only a subset of the largest singular values, converts
the word-document space into a lower dimensional “concept”
space, where two related documents may have a short distance
between them in the reduced space even if they do not have an
overlapping term set.

Next, a 1-versus-all multi-class SVM system is trained,
such that for an individual target language, a separate SVM is
trained with the positive class consisting of the target language
and the negative class consisting of all other languages. For
LID, one may decide the language identity based on the maxi-
mum positive distance from the separating hyperplane [9]. For
verification, the method in [6] is employed, where for each tar-
get language, a pair of GMMs is determined. The first GMM
uses the output SVM distances from the target language utter-
ances to build a target model and the remaining utterances build
an anti-target model. The log-likelihood ratio of a given test
utterance is compared to a threshold for the final decision.

3. Experiments and Result Analysis

In all the following experiments, all data are conversations
recorded over telephone lines, as described in Section 3.1. The
articulatory attribute recognition performance is reported in
terms of manner error rate (MER) and place error rate (PER)
for the manner and place recognizers, respectively. Language
recognition results are reported in terms of equal error rate



Table 1: Amount of recorded speech of the OGI-TS corpus in
terms of hours per each language.

Lang. || ENG | GER | HIN | JAP | MAN | SPA || ALL
Train. 1.71 | 097 | 0.71 | 0.65 | 0.43 | 1.10 || 5.57
Valid. || 0.16 | 0.10 | 0.07 | 0.06 | 0.03 | 0.10 || 0.52

Test 042 | 024 | 0.17 | 0.15 | 0.11 | 0.26 || 1.35

Table 2: MER on the OGI-TS test sentences.
System || MLE-SYS | MCE-SYS | ANN-SYS
MER 37.54% 35.59% 27.99%

(EER), which is the point where the rate of false alarms equals
the rate of false rejections. All the LID experiments reported
in the subsequent sections referred to the 30-second NIST LID
2003 evaluation task [10].

3.1. Corpora

The “stories” part of the OGI-TS corpus is used to train the
articulatory recognizer. This corpus has phonetic transcrip-
tions for six languages: English (ENG), German (GEM), Hindi
(HIN), Japanese (JAP), Mandarin (MAN), and Spanish (SPA).
For each language, the database is divided into three subsets:
training, validation, and test. The overall amount of data in each
subset and language is shown in Tablel. The training partition
of the CallFriend® corpus is used for training the back-end lan-
guage models. It is a collection of unscripted telephone conver-
sation for 12 languages: Arabic, English, Farsi, French, Ger-
man, Hindi, Japanese, Korean, Mandarin, Spanish, Tamil, and
Vietnamese. Each language consists of 20 half-hour telephone
conversations for a total of about 10 hours per language. In
cases where more than one dialect is available, only one dialect
is chosen to train the back-end language models.

Tests are carried out on the NIST 2003 spoken language
evaluation material [10]. It is a collection of unscripted tele-
phone conversations of the same 12 languages that are in the
CallFriend corpus. All the following LID tests used the 30-
second setting, which contains 1280 sessions.

3.2. Attribute Tokenization

Attribute recognizers are designed within the HMM frame-
work. Several alternatives exist to approximate the HMM state
probability density functions, and two of those possibilities,
namely GMMs, and artificial neural networks (ANN5), are in-
vestigated in the following. Specifically, three different man-
ner recognizers are considered. The first is a HMM/GMM
system trained with conventional maximum likelihood estima-
tion (MLE). Each of the 6 manner units are modeled with a
3-state HMM, with each state containing a 32-mixture GMM
observation density. Spectral analysis is performed using a 22-
channel Mel filter bank from 64Hz to 4kHz. Cepstral analy-
sis is then carried out with a Hamming window of 25ms and a
frame shift of 10ms, and followed by cepstral mean normaliza-
tion. For each frame, twelve MFCC features plus the energy
coefficient are appended with their first and second time deriva-
tives to yield a 39-dimensional feature-vector. This system is
referred to as (MLE-SYS). The second system applies MCE
training after building the MLE-SYS seed HMMs and is re-
ferred to as MCE-SYS. The HTK toolkit® is used to implement
these two systems. The third system is a hybrid HMM/ANN
system, and it is implemented as in [7], although multi-class

Zhttp://www.ldc.upenn.edu/Catalog/by Type.jspispeech.telephone
3HTK toolkit, http://htk.eng.cam.ac.uk/
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Table 3: EER for different UAR-VSM configurations.

PUAR-VSM | PUAR-VSM (R)
13.5% 11.3%

System
EER (in %)

ANNSs are used rather than binary classifiers. All the ANNs
are feed-forward single-layer perceptrons with 500 sigmoidal-
based hidden nodes and have a softmax activation function at
the output layer. Energy trajectories in Mel-frequency bands,
organized in a split-temporal context [11] are used as paramet-
ric representations of speech. All of the ANNs are designed us-
ing the ICSI QuickNet neural network software package*, and
trained with the classical back-propagation algorithm with cross
entropy error function. For all of the three manner recognizers,
the training, validation, and evaluation material are used as re-
ported in the last column of Table 1. In Table 2 it lists the MER,
in percentage, on the evaluation set. The ANN-SYS system sig-
nificantly outperforms both the MLE-SYS and the MCE-SYS
system. Therefore, this configuration is used to implement both
the manner and the place recognizers which tokenize the spo-
ken utterances for the remaining LID experiments reported in
Section 3.3. For the sake of completeness, the performance, in
terms of attribute error, of the place recognizer is 57.07%.

3.3. NIST 2003 Language Recognition Evaluation

The aim of the first experiment is to find the number of singular
values (|SV|) to retain in order to achieve a good rank approx-
imation of the term-document matrix, W, and reduce the spar-
sity problem. Figure 2 shows the EER, in percentage, for sev-
eral values of |SV/| for the bigram, trigram, and 4-gram based
W matrix. In the left panel, results concerning the manner-
based UAR-VSM (UMR-VSM) system are shown; i.e., not us-
ing the place transcriptions. Similarily, results regarding the
place-based UAR-VSM (UPR-VSM) system are shown in the
right panel; i.e., not using the manner transcriptions. For the
bigram term-document matrix, the EER curves reach a plateau
at 50 and 75 singular values retained for the manner and place
cases, respectively. In the trigram and 4-gram cases, 200 sin-
gular values are needed to achieve a good rank approximation
of the W matrix. The best EERs are always attained with the
4-gram statistics. Specifically, EERs of 21.5% and 17.5% are
obtained with the UMR-VSM and UPR-VSM configurations,
respectively.

By emulating the PPRLM idea [2], a parallel attribute
recognition followed by a VSM-based language model system
was designed (see Section 2.2). Table 3 shows the EERs for
parallel UAR-VSM (PUAR-VSM). As expected, the parallel
configuration improves LID performance, and a final EER of
13.5% is obtained. To understand how tokenization accuracy
affects the performance on the NIST LID 2003 task, the OGI-
TS test and training sets (i.e., last column of Table 1) are merged
to train the two attribute recognizers. The NIST LID 2003 data
is used as the test set. As a confirmation of our intuition, the
last column of Table 3 reports a 2.2% absolute error reduction,
from 13.5% to 11.3%, with the retrained system (PUAR-VSM
R)).

3.4. Discussion

Language resolution affects the EER as shown in Figure 2.
Specifically, as the order of n-grams increases, the EER de-
creases and results in improved LID performance. It is also ob-
served that the EER gain is higher in the manner-related experi-

4ICSI quicknet package, http://www.icsi.berkeley.edu/speech/qn
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Figure 2: Variation of the percentage of EER on the 30-second
NIST 2003 task in terms of retained singular values. In both
panels, experimental results for the bigram (dash line), trigram
(dashdot line), and 4-gram (solid line) case are shown.

ments than in the place-related ones, but additional experiments
with higher order n-gram should be performed to draw final
conclusions on this issue. A more careful inspection of Figure 2
suggests that the UMR-VSM system suffers from poor acoustic
resolution. To validate this conjecture, we used an undirected
method: we reduced the number of place classes from 10 to 7
instead of increasing the number of manner phonetic classes.
Specifically, the silence and the glottal attributes are folded to-
gether into a single class, and the palatal, the dental and the
coronal attributes are folded into another single class.

Figure 3 seems to confirm our suspicions. Although the 7-
place recognizer has a PER of 45.35% against the 53.07% PER
of the 10-place recognizer, the EER drastically increases when
a 7-place recognizer is adopted. This further insight suggests
that acoustic resolution is more important than recognition ac-
curacy for the LID task. As further confirmation of this asser-
tion, the DET curve 10-place UPR-VSM with bigram statistics
is reported in Figure 3. Even with lower language resolution
the 10-place solution outperforms the 7-place recognizer with
4-grams. Ways to increase the attribute resolution are currently
under study.

The reported results are better appreciated by a qualitative
comparison with [11]. In that work, six PRLM systems were
trained on the OGI-TS specific language data and tested on the
30-second NIST LID 2003 task. EERs ranging from 11.48%
to 15.08% were reported. It was also shown that EER can be
drastically reduced when 10 or more hours of specific-language
transcribed material is available for training the phone recog-
nizers. In the best case scenario presented in this work, our
attribute recognizers are trained with roughly 6 hours of data.
We therefore conclude that the proposed UAR-VSM approach
to LID is definitely competitive with standard PRLM systems,
and we expect to report further improvement in the future by
increasing the acoustic and the language resolutions, increasing
the training data, and moving from binary SVM classifiers to
multi-class classifiers (e.g., ANNs).

4. Summary

This paper proposes a new universal acoustic characterization
framework for spoken languages recognition. Based on model-
ing a shared set of speech attributes, such as manner and place
of articulation, a spoken utterance is tokenized into a sequence
of universal attribute units so that it can be considered as a
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Figure 3: DET plots for several UPR-VSM configurations.

spoken document. LSA-based feature extraction and dimen-
sion reduction are performed to obtain feature vectors. Vector-
based language classifiers are utilized in a similar fashion to de-
signing text categorization systems. By combining manner and
place tokenizers we achieve an equal error rate of 11.3% which
is comparable with or better than LID systems trained on the
same OGI-TS and CallFriend corpora with similar system con-
figurations and complexities. We believe improving attribute
transcription accuracy and expanding into multiple attribute to-
kenizers are two key research directions to enhance attribute-
based spoken language recognition system performance.
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