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Abstract

This paper proposes a novel voice activity detector (VAD) based
on singular value decomposition (SVD). The spectro-temporal
characteristics of background noise region can be easily ana-
lyzed by SVD. The proposed method naturally drops hangover
algorithm from VAD. Moreover, it adaptively changes the deci-
sion threshold by employing the most dominant singular value
of the observation matrix in the noise region. According to
simulation results, the proposed VAD shows significantly bet-
ter performance than the conventional statistical model-based
method and is less sensitive to the environmental changes. In
addition, the proposed algorithm requires very low computa-
tional cost compared with other algorithms.

Index Terms: voice activity detection, singular value decom-
position

1. Introduction

The voice activity detector (VAD) in the noisy signal plays a
very important role in various fields, such as efficient speech
transmission and speech recognition. Most of VAD algorithms
assume that the statistics of background noise are stationary
over the period of time, which is longer than that of speech [1].
This assumption makes it possible to robustly estimate the spec-
tral characteristics of slowly time-varying noise.

The statistical model-based VAD [1] is very effective
method and many algorithms have been developed based on
this. However, this has many detection errors at the offset re-
gion of speech whose energy decreases. To solve this problem,
the hangover scheme in [1] and the smoothed likelihood ratio
(SLR) in [2] have been proposed. In most of VADs, a kind of
hangover algorithm is normally added to smooth the VAD de-
cision and it is generally based on heuristic algorithms. Later it
has been studied that the introduction of the long-term speech
information, which is a major factor in hangover module, gives
many advantages for speech/pause discrimination in the high
noise environments [3].

This paper proposes a novel VAD based on applying the sin-
gular value decomposition (SVD) [4] on the observation matrix
composed of adjacent multiple frames, in which possess long-
term information, in the spectral domain. Our method has two
great advantages over the statistical model-based VAD. First,
the constraint of embedment of heuristic hangover algorithm is
removed in the proposed method due to usage of multiple ob-
servation frames. Second, it is possible to drastically reduce the
computational cost by properly retaining the number of eigen-
vectors based on the property of SVD since a set of the basis
vectors in the proposed VAD is estimated and updated in the
noise region only.

As a related work, KLT-based VAD in [5] has been pro-
posed as a module in the speech enhancement system and that
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has been worked with the multiple frames of the noisy speech
in time domain. Though it represented good results for high
SNR, it has not been worked well in low SNR. Also, it is com-
putationally very expensive [5] since basis has to be updated in
every frame.

This paper is organized as follows. In Section 2, the general
VAD scheme is described. In Section 3, the proposed algorithm
based on SVD is developed and our proposed method is gen-
eralized by employing the adaptive threshold technique which
reflects the time-varying background noise characteristic. The
performance of the proposed algorithm is evaluated in Section
4 and then a conclusion is drawn.

2. VAD summary

This section briefly states the general VAD process and the over-
looked or redundant process in VAD is also described. First,
let’s assume that the input speech signal y(¢) in time domain
is corrupted by additive noise n(t) which is uncorrelated with
clean speech z(t) by following equation

y(t) = o(t) + n(b). ()

Here, there is no consideration of the channel distortion for con-
venience.

The input speech signal has to be segmented into frames to
use as input feature of a certain VAD. Thus, a set of input data
in one frame is converted to a specific domain through a specific
operation as follows:

v = x +nf? @
where ygi), xgi) and ngi) denote the vectors in a specific do-
main s transformed by an operation from y(¢), z(¢) and n(t) at
frame index ¢, respectively. Discrete fourier transform (DFT) is
a representative operation. Of course, it is possible that no op-
eration is performed on the input data in time domain, namely
bypass. Then the feature parameter extraction process for the
robust decision in VAD is followed as

F&) = fxP +0) = fx) + f0l) 3

where f(-) is a linear function and f(ygl)) is used as the fea-
ture parameter for VAD decision. Examples of f(-) include the
frame energy in time domain and the likelihood (or likelihood
ratio) of a statistical model in frequency domain.

Final decision in VAD is generally accomplished by fol-
lowing process. For convenience, let’s assume that the statistics
of f (ngi)) is stationary and every frame is independent of each
other. First, we should estimate the reference point from the
initial signal segments (e.g., f (ygl))) where the noise signal is

presented and the speech signal is absented (e.g., ygl):ngl)).

6 — 10 September, Brighton UK



Let’s this be f(n’"%"). Second, from a series of f (yf)) along
frame index, the speech/nonspeech decision on every frame is
made by following decision rule:

d(f(y?), f(m™) s TH )

where d(a, b) is a distance (or similarity) between a and b and
frame ¢ is decided as the speech when this measure is larger
(smaller when the similarity is used) than the threshold (T'H).
The Euclidian distance between the feature parameter and refer-
ence point and the likelihood ratio based on the statistical model
of the feature parameters are representatives of d(-). However
the speech/nonspeech decision on every frame is very sensitive.
To solve this problem, a hangover algorithm is usually attached
to VAD and then more robust decision is obtained by using the
results of adjacent frames. Its main idea is based on the strong
correlation among adjacent speech frames. That is, the assump-
tion of independence among frames actually operates as a weak
point for the robust decision in VAD.

Most of VADs under a noise environment perform with
both temporal and/or spectral information of input signal. This
spectro-temporal characteristic of the background noise can be
observed well in the spectrogram. Based on this, the correlation
among the spectral bins over a certain period of time can be an-
alyzed and this may be utilized as one effective feature param-
eter for VAD decision. Thus the additional hangover algorithm
becomes naturally unnecessary because the correlation factor
across multiple frames presents the very smooth trajectory. But
the employment of multiple frames causes the computation in-
crease. This paper proposes an efficient VAD algorithm based
on the multiple frames with low computational complexity. The
detail explanation is following section.

3. SVD-based VAD
3.1. Initial configuration by SVD

VAD necessarily requires an initial processing to setup a thresh-
old value for the final decision which is generally estimated
from the background noise regions only. To identify this noise
characteristic along both frequency and time axes, the spec-
trogram is very useful. In this case, the operation in (3) for
VAD corresponds to DFT. Of course, the mel scaled filter bank
output may be taken as an alternative converted data to re-
duce the dimension of DFT data. For convenience, this con-
verted data is called input feature vector of VAD. First, let
Y = [y(1> . -y”) .- y(T)] be the total input feature vector
sequence composed of the 1" frames, where y® denotes M-
dimensional vector defined as y("> = x@ + n® in frame i
from (2). Second, let’s assume that the initial K frames are
composed of only the background noise and it is defined as

N = [n(l)n(Q) . n(K>] (5)

where N is M x K matrix which represents the specro-temporal
characteristic of background noise in a specific noise region.
That is, the column space basis reflects the correlation during
some duration between noise spectral bins along the frequency
axis, while the row space basis reflects the correlation between
the temporal changes along the time axis in each bin. Thus it
is very important to analyze these two correlations simultane-
ously. Among many analysis tools, SVD can be regarded as
a powerful tool for this operation. From this, the observation
matrix N is decomposed by SVD as follows:

N =Usv”T (6)
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where U and V are M x M and K x K matrices, respectively.
The columns of both U and V matrices are orthogonal bases
which span the row space and column space of the IN matrix,
respectively. Actually, U is a set of the eigenvectors of NN7T
and V is a set of the eigenvectors of N7 IN. On the other hand,
S is M x K diagonal matrix whose diagonal entries are known
as the singular values of N. Also it is the alternative of eigen-
values corresponding to U and V. These singular values can be
thought of as the weights of each basis vectors. In general they
are sorted as ascending order of their values. Actually, the sin-
gular values correspond to the power density of N in this case.
Therefore, a set of U and V can be regarded as the spectro-
temporal basis of background noise underlying both time and
frequency simultaneously.

3.2. SVD-based Filter

Since both of U and V are invertible, SVD result in equation
(6) can be rewritten as

S=U"NV ©)
Now, let’s briefly describe the motivation of SVD-based VAD
based on (7). If another segment in the input vector sequence
has statistics and energy level similar to those of N and substi-
tutes for N in (7), the S hardly changes. But if the property of
an input segment is very different from that of N, the result is
so different from the S. Moreover there is no guarantee that it
is the diagonal matrix.

Based on the above explanation, let the relation between
factors in (7) be generalized to establish a new SVD-based
VAD. Based on y) = x( 4+ n¥_ the segment 7 in input se-
quence is defined as follows:

YO =x® 4 NO. (8)
where YO = [y ...y denotes the segment i of the
input observation sequence, which is composed of K adjacent
frames. Of course, y(i) denotes the location of reference frame
in Y® and its point is movable backward and forward. More-
over, it is assumed that N® ig stationary. That is, it’s statistics
is the same as IN in (5). Under this assumption, Y@ is con-
verted by U and V matrices in (7) as follows:

(HK)}

= =uTy®Wv )
=U'NYV 4+ UTXDV (10)
=s+UTx®v an
= S + diag[U"X V] (12)

where diag(+) is to take only diagonal elements of any matrix
s0 it is assumed that =) is diagonal.

Therefore, as aforementioned, the values of diagonal terms
in @ is determined depending on whether input segment is
composed of only background noise or not. If X*) is absented
inY®, 3 becomes S under the above assumption. If X® s
presented in Y@, the values in £ become larger than those
of S. However it is computationally expensive to perform all
the matrix operations in Uly@v. Actually, the number of
multiplications and additions is approximately 2M (M + K) K.
Fortunately, both U and V are composed of eigenvectors, the
dimension reduction can be performed by retaining appropri-
ate number of the eigenvectors, and thereby the computation
cost can be drastically decreased. Now, how to determine the
number of eigenvectors is described. For this, the ratio of the



individual singular value to the sum of the total singular values
is first considered. From (7), the contribution to coverage of
population of the initial noise segment is calculated as follows:

Sd
L
Dol St

where sq4 is the dth diagonal term of S; L = min(M, K),
namely the minimum value of M and K; SV R4 denotes how
much the dth singular value contributes in the total sum of the
singular values. In the majority of cases, the first few values can
explain almost all population of input segment. Fig. 1 shows a
set of SV R; in several background noise types where SV R; is
computed only on the nonspeech region of all input frames se-
quence Y. From the figure, the coverage of SV R; is over 95%
of the total singular values. Thus, if only one basis vector is
used in (9), the computation cost becomes drastically reduced.

SVRq = (13)
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Figure 1: The ratio of maximum singular value to the sum of
the total singular values

Based only on the first singular value s; and the first eigen-
vectors of U and V, (11) can be simplified as follows:

oV =ulTyWy, (14)

=5 +ulXOv, (15)
where u; and v are the first column vector of U and V, re-
spectively, and JY) is the first diagonal term of 3. To calcu-
late the computation cost in this case, (14) can be expressed as
follows:

@ = wnyl” + wayl” + -+ uanyly

= [ulTy(i>]v11 + -+ [U?Y(HK)]UM(

(16)
a7

T
uy

ulTY“)vl

where U1, yﬁf) and v1, denote mth element of u;, mth el-
ement of y(* and kth element of v1, respectively. Note that
the ¢th segment of input sequence, Y@, can be recursively
computed. To make Y from Y~ the first column vec-
tor y(i’1> in yG¢-v discarded; the rest of columns in Y-
is shifted left in turns; the new input vector with ¢ + K index
y(“'K) is inserted at K'th column location. In (16), %1, can be
regarded as FIR filter coefficients with respect to the observa-
tion vectors. So ut y® is the filtered result of a input vector in
observation matrix by u;. Thus a new K-dimensional feature
vector is obtained as a result of filtering Y with u;i. These K
resulting values are again converted through the filter vi com-
posed of vix. Then the final feature parameter for the our pro-
posed VAD is obtained. Therefore, in (17), if -1 dimensional
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vector whose element is ulTy(i) is saved in a buffer, additional
computation is required only on y(i+K ). As a result, the com-
putation cost of one input segment is only about 2(M + K)
multiplications and additions.

3.3. Decision operation

From (13), since the first eigenvector reflects the most statistic
of background noise, the threshold can be naturally associated
with the first singular value. Therefore, based on (15), an inge-
nious decision rule is defined as follows:

o {

where 17 = [3s; is the decision threshold and 5 (>1) is empiri-
cally tuned for the best tradeoff between speech and nonspeech
classification errors.

when Y is speech
otherwise.

>,

<n, (19

3.4. Adaptive SVD-based VAD

Since the noise varies with time, the empirically tuned thresh-
old n in (18) is not adequate in some regions. That is, when
nonspeech is continued during some duration and its spectro-
temporal characteristic is different from that in previous non-
speech region, the U, V and the threshold value should be
adaptively updated. This adaptive VAD is easily established by
pseudo-code except for detailed sub-operations as follows:

Initialize Y = [y -+ yx] + YO, Y = UWgOyv®”
N =0,n+ BsV, uy « ul, vy « vV
fori=2to T do
Y« Y®
oV ufYv
it ") < 1) then
present frame is speech, N, = 0
else
Ne++
if N. == D then
Y = U(i)s(i)v(i)T
< Bs) wy + uf”
end if
end if

end for

, V1 (—v(li),Nc =0

Here, Y, u; and v; denote the temporary buffers; N, de-
notes a counter variable for the duration of noise region; D de-
notes the maximum duration for updating the parameters. An
example of the effect by the adaptive scheme is shown in Fig.
2, where the clean speech is corrupted by the babble noise at
10 dB SNR. Fig. 2(a) represents the original noisy speech and
Fig. 2(b) and (c) represent the trajectory of the features under
the constant and adaptive threshold, respectively. And the dash
line indicates the true speech region. From the figure, it can be
seen that the adaptive SVD-based VAD detects well the speech
frame which is missed by the constant threshold.

4. Experimental results

The proposed VAD is compared with the statistical model-based
VAD (ST-VAD) with the hangover [1] and G.729 VAD based on
the speech detection probability P; and false-alarm probability
P;. To obtain P; and Py, the reference decisions are made
from a clean speech material with duration of 115 seconds by
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Figure 2: The effect of adaptive threshold and basis (a) noisy
speech signal (b) constant threshold (c) adaptive threshold

manual labeling at every 10ms. Here, the VAD algorithms were
applied to the noisy speech samples corrupted by adding white
noise and vehicular noise from NOISEX-92 database to clean
speech at various SNR. For the input vector y® in our VAD,
the mel-scaled filter bank outputs (M=23) are extracted every
10ms over frames with 20ms size. Moreover, though K=21 in
Y @ s setup for best results in this paper, it was observed that
the proposed method is less sensitive on K through a series of
experiments.

The receiver operating characteristic (ROC) curves, which
show the trade-off characteristics between Py and Py, are
shown in Fig. 3 and Fig. 4 and it is seen that our proposed
VAD performs better than ST-VAD and G.729 VAD.
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Figure 3: ROC curves of SVD and statistical model based deci-
sion rules for white noise at 5dB SNR

In Fig. 5, the proposed VAD shows more smoothed re-
sult than the ST-VAD. This is because the proposed VAD is
based on multiple frames. Therefore, the proposed VAD can
work without employing any hangover algorithm. Moreover, as
aforementioned, Fig. 5(b) shows the weak point of ST-VAD in
the the offset region of speech whose energy decreases, even
though a hangover algorithm is attached, while our proposed
VAD is more robust in that region.

5. Conclusions

This paper proposes a new effective SVD-based VAD with very
low computational cost. In the proposed VAD, the projection of
multiple frames into the eigenspace for background noise yields
the smooth trajectory of feature parameter. Moreover the use
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Figure 5: Comparison of the proposed VAD and ST-VAD (a)
noisy speech signal (b) result of ST-VAD (c) result of proposed
VAD

of the adaptive threshold based on the singular value estimated
from background noise region also increases the speech detec-
tion probability for a given false-alarm rate. Future work will
look at the statistical method to determine an adaptive threshold
for more robust decision in various environmental conditions.

6. Acknowledgements

This research was performed for the Intelligent Robotics Devel-
opment Program, one of the 21st Century Frontier R&D Pro-
grams funded by the Ministry of Knowledge Economy of Ko-
rea.

7. References

J. Sohn and W. Sung, “A voice activity detector employing soft
decision based noise spectrum adaptation”, in Proc. Int. Conf.
Acoustics, Speech, and Signal Processing, 1998, pp. 365-368.

(1]

[2] Y.D. Cho and A. Kondoz, “Analysis and improvement of a statis-
tical model-based voice activity detector”, IEEE Signal Process.

Lett., vol. 8, no. 10, pp. 276-278, Oct., 2001.

J. Ramirez, J. C. Segura, M. C. Benitez, A. de la Torre, and A.
Rubio, “Efficient voice activity detection algorithms using long-
term speech information”, Speech Comm., vol. 42, no. 3-4, pp.
271-287, 2004

G. Strang, Linear Algebra and Its Applications, 3rd ed. New York:
Harcourt Brace Jovanonich, 1988.

(3]

(4]

[S] A.Rezayee and S. Gazor, “An adaptive KLT approach for speech
enhancement”, IEEE Trans. Speech Audio Processing, vol. 9, pp.

87-95, Feb., 2001



