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Abstract
This paper aims at investigating the use of Kullback-Leibler
(KL) divergence based realignment with application to speaker
diarization. The use of KL divergence based realignment op-
erates directly on the speaker posterior distribution estimates
and is compared with traditional realignment performed us-
ing HMM/GMM system. We hypothesize that using posterior
estimates to re-align speaker boundaries is more robust than
gaussian mixture models in case of multiple feature streams
with different statistical properties. Experiments are run on
the NIST RT06 data. These experiments reveal that in case
of conventional MFCC features the two approaches yields the
same performance while the KL based system outperforms the
HMM/GMM re-alignment in case of combination of multiple
feature streams (MFCC and TDOA).
Index Terms: speaker diarization, information bottleneck, fea-
ture combination

1. Introduction
Speaker diarization systems address the problem of “who spoke
when” in a given audio recording. This involves determin-
ing the number of speakers and identifying the speech corre-
sponding to each speaker in an unsupervised manner. Con-
ventional speaker diarization systems use short term spectral
features like mel frequency cepstral coefficients (MFCC) and
are based on ergodic HMMs [1, 2]. Each speaker is modeled
with an HMM state with a minimum duration constraint. The
state emission probabilities are modeled with Gaussian Mixture
Models(GMM). The diarization algorithm follows an agglom-
erative clustering of initial speech segments followed by the
realignment over the estimated speaker models. GMMs have
been proved being very effective for clustering and re-alignment
when a single feature stream is used.

Recently speaker diarization systems are converging to-
wards combining multiple feature streams. Alternate features
such as features obtained from long-time windows, Time De-
lay of Arrivals (TDOA) features (in case of MDM data) have
been explored in the context of speaker diarization [3, 4]. Com-
bination of such complementary features with the conventional
MFCC features improves the diarization performance consider-
ably [3, 4]. Conventional HMM/GMM systems construct differ-
ent models for each feature stream. The feature combination is
performed by a linear combination of the log likelihoods. How-
ever, different features possess very diverse statistical proper-
ties. This could lead to two different problems. On one side
different features may need GMMs with different complexity
(i.e. different number of gaussians). On the other hand GMMs
may have totally different dynamic ranges of log likelihoods for
each feature stream. For example, in [3] the number of Gaus-
sian components in the initial model is fixed as five for MFCC

features and one for TDOA features. In addition, variabilities
across different recording conditions could influence the fea-
ture statistics. The dimension of TDOA features varies depend-
ing on the number of distant microphones. Using a global linear
combination to combine log likelihoods may not be appropriate
in such scenarios.

In our previous work [5], we partially addressed the
problem using a non parametric approach to multiple-streams
speaker diarization based on the Information Bottleneck prin-
ciple. The clustering is based on a set of relevance variables
which are represented as posteriors of a background GMM
model. Whenever multiple features are used, the combination
happens at the posterior distribution level rather than at the log-
likelihood level.

In this paper, we propose a method to perform re-alignment
using solely the posterior distribution values and investigate its
application into multi stream diarization. The approach is based
on the use of Kullback-Leibler divergence between distribu-
tions. The problem of minimizing the KL divergence between a
reference posteriors and a learned set of models has been stud-
ied in the context of Automatic Speech Recognition (ASR) and
can be solved by an EM algorithm [6]. In case of multi-stream
diarization, a posterior based combination is employed, thus
avoiding the problem of different feature dynamic ranges. The
posterior space have the same dimension for all features, thus
making the system more robust to variations in feature dimen-
sion and scale. In addition, the complexity of the realignment
algorithm stays the same. In the present paper Section 2 re-
views the Information Bottleneck(IB) principle and speaker di-
arization using agglomerative IB. Section 3 then describes the
proposed algorithm for realignment. Experiments and results
are presented in Section 4, and finally section 5 concludes the
paper.

2. IB based Diarization
Let us consider a set of speech segments X = {x1, . . . , xT }
obtained from uniform linear segmentation of the speech data in
the audio recording. The speaker diarization task aims at clus-
tering the elements ofX that are uttered by the same speaker. In
[7] we proposed an approach based on the Information Bottle-
neck principle inspired from rate distortion theory. In contrast to
conventional minimum distortion based clustering techniques,
it is based on preserving the relevant information specific to a
given problem. The IB principle states that the best clustering is
the one that compresses the input variables with minimum loss
of mutual information with respect to set of relevance variables
referred as Y . Relevance variables are variables that are con-
sidered important or carry the relevant information for a given
clustering problem. We had proposed to use the gaussian com-
ponents of a background GMM as relevance variable set Y [7].
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This is motivated by the wide success of GMMs for speaker
recognition. The clustering operates using probabilities p(y|x)
obtained in trivial way using Bayes’ rule.

Thus, let us consider a set of input variables X (i.e. speech
segments) to be clustered into clusters C = {ci, . . . , cK}, and
let Y denote the set of relevance variables which contain useful
information about the problem (i.e. the components of a back-
ground GMM). The IB principle states that the best clustering
representation C must preserve as much information about Y
as possible i.e. the clustering representation should maximize
the mutual information I(Y,C) under a constraint of minimum
mutual information I(X,C) (See [8] for details). This corre-
sponds to the maximization of:

F = I(C, Y )− 1

β
I(X,C) (1)

Where β is a Lagrange multiplier (the notation is consistent
with [8]). This criterion should be optimized with respect to
the stochastic mapping p(c|x). This leads to a consistent sys-
tem of equations which can be solved using iterative optimiza-
tion techniques [8].

The optimization of the objective function (1) can be done
in greedy fashion using the agglomerative Information Bottle-
neck method [8]. The algorithm is initialized with the trivial
clustering of each point considered as a separate cluster (|X|
clusters). At each step of the algorithm a cluster merge is per-
formed such that the information loss with respect to the rel-
evance variables is minimum. The loss of mutual information
at each step is given by a Jensen-Shannon divergence which
is straightforward to compute from the posterior distribution
p(y|x). This method is described in detail in [9]. The informa-
tion preserved I(C,Y )monotonically decreases at each merge.
The optimal number of clusters are selected based on a thresh-
old on the Normalized Mutual Information (NMI) I(C,Y )

I(X,Y )
. The

complete algorithm is summarized as follows.
1 Acoustic feature extraction from the beamformed audio.
2 Speech/non-speech segmentation and rejection of non-
speech frames.

3 Uniform segmentation of speech in chunks of fixed size
D = 250ms i.e., setX.

4 Estimation of a Gaussian component with shared diago-
nal covariance matrix for each segment i.e., set Y .

5 Estimation of conditional distribution p(y|x).
6 aIB clustering and model selection
7 Clustering refinement using Viterbi re-alignment.

Further details of the algorithm can be found in [7] where it is
shown that this approach yields state of the art results with a sig-
nificant speecd up factor. The algorithm produces a partition of
the data (i.e. a clustering) p(C|X) as well as posterior distribu-
tion for each speaker (i.e. for each cluster) c i.e p(Y |C). In the
following we will discuss how to re-align speaker segmentation
using directly the distribution p(Y |C) without any GMM.

2.1. Multiple Features

Whenever multiple feature streams, {Fi} are available the com-
bination can directly happen in the space of the relevance vari-
ables i.e. using the posterior probabilities p(y|x) . For each
feature stream Fi we estimate a background GMM MFi . The
combined posterior distribution is then calculated as

p(y|x) =
X

i

p(y|x,MFi)P
i
F (2)

−400 −300 −200 −100 0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6
x 104

(a) CMU 20050914-0900 (b) EDI 20050216-1051

Figure 1: Histogram of TDOA features of RT06 eval meetings

where P i
F is the prior probability corresponding to feature

stream Fi. These combination scheme does not suffer from the
different dimensionality or the different statistics of the features
because it make use of posterior estimates p(y|x) rather than
log-likelihoods.

3. Realignment
Speaker diarization systems make extensive use of Viterbi
realignment. The realignment is supposed to improve the
speaker boundaries obtained after the agglomerative clustering.
HMM/GMM are used for this purpose [1, 2]. Generally multi-
ple realignment, re-estimation iterations are performed. In case
of multiple feature streams, a weighted combination of log like-
lihoods is used for the realignment [3].

However, the statistics of each feature stream are usually
different. Consider for example the MFCC features and TDOA
features. Figure 1 shows the histogram of the TDOA features of
two meetings. It can be seen that the distribution is impulsive
in case of TDOA feature stream, while MFCC features follow
approximately Gaussian distribution. Also the dimension of the
TDOA features can vary from meeting to meeting depending on
the number of microphones used in recording. Figure 2 plots
the negative log-likelihood obtained using a GMM for MFCC
and TDOA features: while MFCC log-likelihood is approxi-
mately constant across meetings, TDOA log-likelihood change
considerably according to the number of microphones thus the
dimensions of delay features.

We investigate here a new realignment algorithm based on
the posterior distribution values p(y|x) (i.e. the posterior value
of a guassian component given the feature vector x) aiming at
being more robust against such variations in statistics. The algo-
rithm is motivated by the IB principle and aims at using Viterbi
realignment in posterior space as defined in Section 2. Let us
start with the following proposition:

Proposition 1. The IB maximization of Equation (1) is equiva-
lent to the following minimization:

min[I(X,C) + β E(d(X,C))] (3)

where d(X,C) = KL(p(Y |X)||p(Y |C)), is the KL diver-
gence between the posterior distributions given by the cluster
and the input (proof in [10]).

Consider a feature stream (x1, x2, . . . , xT ) partitioned into
a set of clusters (speakers) c1, . . . , cK by the aIB algorithm. In
case of hard clustering, β → ∞ and the IB optimization of (3)
reduces to the minimization of second term:

E(d(X,C)) = E(KL(p(Y |X)||p(Y |C)))

=
X

t

p(xt)
X

i

p(ci|xt)KL (p(Y |xt)||p(Y |ci))
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Given the cluster assignment p(ci|xt) ∈ {0, 1} (hard cluster-
ing), and assuming the input clustering elements have uniform
prior, the optimization turns out to be the minimization of:

argmin
c

X

t

KL (p(Y |xt)||p(Y |ct)) (4)

Where ct is such that p(ct|xt) = 1.
Let us first consider the classical HMM/GMM realignment.

The system has a set of speaker models (GMM). These GMM
models are used as the state emission probabilities of an er-
godic HMM. The optimal Viterbi path (speaker sequence) c =
(c1, c2, ..., cT ) is determined as the best sequence of speakers
that gives the maximum likelihood for the feature stream:

copt = argmax
c

X

t

log(bct(xt)) + log(actct+1) (5)

Where ct is the speaker at time index t, bct(.) is the emission
probability distribution (GMM) corresponding to speaker ct and
acicj is the transition probability of transition from speaker ci
to speaker cj . In case the speaker is represented with a single
feature stream GMM, we have:

log(bct(xt)) = log
X

r

wr
ctN (xt, μ

r
ct ,Σ

r
ct) (6)

where N (.) is the Gaussian pdf; wr
ct , μ

r
ct ,Σ

r
ct are weights,

means and covariance matrix corresponding to speaker ct. In
case of multiple feature streams GMM with features xt =
{x1

t , x
2
t}, the log linear combination becomes:

log(bct(xt)) = P 1
F log

X

r1

wr1
ct N(xt1, μ

r1
ct ,Σ

r1
ct )

+(1− P 1
F ) log

X

r2

wr2
ct N(xt2, μ

r2
ct ,Σ

r2
ct ) (7)

where P 1
F is the log-linear combination weight and means, vari-

ance and covariance matrices are to be considered relative to
each feature stream. The weight is static across different meet-
ings. However, note that likelihood values have large variations
according to number of channels (Figure 2).

In a similar manner, we propose to extend the objective
function from equation (4) as follows:

copt = argmin
c

X

t

KL (p(Y |xt)||p(Y |ct))− log(actct+1) (8)

Thus the KL divergence between each feature vector and the
posterior distribution of the speaker model is minimized. The
problem of minimizing the KL divergence between a reference
posteriors (in this case the p(y|x)) and the learned set of mod-
els (p(y|c)) can be solved by an EM algorithm [6]. The re-
estimation formula for p(y|c) is simply given by

p(y|ci) =
X

xt:xt∈ci

p(y|xt) (9)

i.e. the new speaker model is obtained by averaging poste-
rior probabilities p(y|xt) for xt that belongs to ci. In both
HMM/GMM and HMM/KL systems, a minimum duration con-
strain on the speaker states is imposed as in [1].

Whenever multiple feature streams are used the re-
alignment can be performed using the combined posterior prob-
abilities as defined in Equation (2). These features, being esti-
mates of probability values, are normalized.
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Figure 2: Variation of average negative log likelihoods of the
background GMM across meetings for MFCC and TDOA fea-
tures together with number of microphones. The negative log
likelihoods of TDOA features is dependent on the number of
microphones.

4. Experiments and Results
Although the proposed framework is general, we explore here
the combination of TDOA features with conventional MFCC
features. We perform the experiments on NIST RT06 evalua-
tion data for “Meeting Recognition Diarization” task recorded
via Multiple Distance Microphones(MDM). The data was pre-
processed and beamformed with BeamformIt [11] toolkit. The
bug fixed version of BeamformIt 2.2 is used for this purpose
which provides different features compared to those used in [5].
We verified an improvement with the new beamforming in the
MFCC based system as compared to what reported in [5]. 19
MFCC features and TDOA features were extracted from the
beamformed signal. TDOA feature dimension depends on the
number of microphones used. The variation of average nega-
tive log likelihood of the background GMM for these features
is illustrated in Figure 2. It can be seen that the statistics of
the TDOA features vary considerably across meetings and de-
pends on the number of microphones used. The log likelihood
of MFCC features however, seems to be stable across different
meetings.

Diarization systems are evaluated using Diarization Error
(DER) as the measure. DER is the sum of speech/non-speech
error and speaker errors. Speech/non-speech error consists of
missed speech and false alarm errors. Speech/no-speech seg-
mentation is obtained using a forced alignment of the reference
transcripts using the AMI RT06 first pass ASR models [12].
Since the same speech/non-speech segmentation is used across
all the experiments, only speaker error will be reported hence-
forth.

Experiments aims at comparing re-alignment performed us-
ing the HMM/GMM and the HMM/KL systems in case of sin-
gle and multiple feature streams. The agglomerative clustering
framework is described in details in [7] for the single feature
stream and in [5] for the multiple feature streams case. In case
of multiple feature streams, the weights are empirically deter-
mined from a development dataset. The MFCC weight is fixed
to 0.9 in case of HMM/GMM system (log-likelihood combina-
tion) and to 0.7 in case of aIB clustering (posterior distribution
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Table 1: Speaker error comparison of proposed system and baseline – Individual features and combination

MFCC features TDOA features Feature Combination
Realignment Realignment Realignment

Meeting Without HMM/ KL Without HMM/ KL Without HMM/ KL
Realign GMM based Realign GMM based Realign GMM based

CMU 20050912-0900 12.2 9.0 8.4 25.40 23.5 22.5 7.6 3.8 5.7
CMU 20050914-0900 15.5 11.6 11.4 24.60 21.5 21.9 4.8 3.0 3.1
EDI 20050216-1051 35.5 31.0 30.7 36.30 40.4 38.7 7.1 4.3 5.1
EDI 20050218-0900 26.8 23.2 24.3 30.00 29.4 31.1 18.6 16.2 15.7
NIST 20051024-0930 14.5 10.1 10.2 10.90 9.2 10.8 5.5 3.4 3.9
NIST 20051102-1323 14.4 10.1 10.3 11.30 8.2 8.7 2.5 1.2 1.6
TNO 20041103-1130 19.9 18.6 16.0 47.90 48.5 48.7 28.3 31.3 26.5
VT 20050623-1400 11.4 5.5 6.6 22.90 21.6 22.2 22.0 22.3 20.4
VT 20051027-1400 26.3 25.3 27.0 11.60 28.0 13.4 12.1 16.6 11.0

ALL 19.3 15.7 15.7 24.40 25.0 23.9 11.6 10.7 9.9

combination).
Table 1 provides the meeting-wise speaker error rate for the

agglomerative clustering without realignment as well as with
HMM/GMM and KL based realignments. The case of MFCC
features, TDOA features and MFCC+TDOA features are con-
sidered. Let us consider separately all the different cases.

In case of MFCC features both HMM/GMM and KL based
system have the same overall performance showing that in such
a case there is no reason for preferring a scheme over the other.
In case of TDOA features (where the number of features and
their statistical properties change from meeting to meeting) the
KL based system outperforms the HMM/GMM by 1.1% abso-
lute. In case of combination of MFCC and TDOA the improve-
ment of the KL based re-alignment is 0.8% absolute i.e. from
10.7% to 9.9%.

5. Conclusions
In this work we have proposed a KL divergence based realign-
ment scheme that operates on the speaker posterior estimates.
This extends our previous work on Information theoretic clus-
tering. The system only depends on posterior probabilities of a
set of relevance variables defined as the components of a back-
ground GMM model. When tested on single feature stream
(e.g. MFCC coefficients), the proposed re-alignment produce
the same performance as the conventional HMM/GMM re-
alignment. On the other hand when the diarization uses multi-
ple feature streams i.e. MFCC and TDOA features with differ-
ent statistics and different dimensions, the KL divergence based
re-alignment outperforms the HMM/GMM by 0.8% absolute
reducing the speaker error from 10.7% to 9.9%.

Although in this study, we investigated the combination of
MFCC and TDOA the proposed multiple stream diarization sys-
tem is completely general and can be extended to other fea-
tures (acoustic or visual) with very different statistical proper-
ties . Given that combination and re-alignment is performed
with posterior distribution estimates, the proposed approach is
supposed to be more robust than conventional HMM/GMM.
Experiments with other feature sets are currently investigated
and will be addressed in future works.
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