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Abstract

Model-based joint uncertainty decoding (JUD) has recently
achieved promising results by integrating the front-end uncertainty
into the back-end decoding by estimating JUD transforms in a
mathematically consistent framework. There are different ways of
estimating the JUD transforms resulting in different JUD methods.
This paper gives an overview of the estimation techniques existing
in the literature including data-driven parallel model combination,
Taylor series based approximation and the recently proposed sec-
ond order approximation. Application of a new technique based on
the unscented transformation is also proposed for the JUD frame-
work. The different techniques have been compared in terms of
both recognition accuracy and computational cost on a database
recorded in a real car environment. Experimental results indicate
the unscented transformation is one of the best options for esti-
mating JUD transforms as it maintains a good balance between
accuracy and efficiency.

Index Terms: noise robustness, VTS, joint uncertainty decoding,
unscented transformation

1. Introduction

Noisy environments significantly degrade the performance of au-
tomatic speech recognition (ASR) systems, in particular when the
acoustic models are trained with clean speech. The relatively low
robustness against environmental noise makes it difficult to deploy
ASR technology in real applications.

One approach to tackle this problem is to adapt the previously
trained clean speech hidden Markov models (HMM) to the en-
countered noisy environment. Vector Taylor series (VTS) [1] [2]
is a popular technique which applies a linear approximation to the
non-linear noise corruption for each HMM mixture by first-order
Taylor series. Although promising results have been achieved [3],
the computational cost of VTS is relatively high as the Taylor se-
ries expansion must be calculated for each mixture in the HMM.

Recently, another model adaptation technique, joint uncer-
tainty decoding (JUD), was introduced [4]. By modelling the rela-
tionship between clean and noisy speech with their joint distribu-
tion, this method adapts the HMM in a mathematically consistent
framework. A key part of JUD is the estimation of JUD trans-
forms based on the probability density function (PDF) of clean
speech and the estimated noise. One way to achieve this is by
virtue of numerical methods e.g. data-drive parallel model com-
bination (DPMC) [5], which is very costly to compute as a large
number of random samples need to be generated. Alternatively,
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a Taylor series expansion based JUD was introduced in [6] and
turns out to be much faster than DPMC. This technique was fur-
ther compared with the standard first-order VTS in [7] and the two
methods were shown to be equivalent except that JUD uses fewer
and rougher expansion points. Following this observation, a sec-
ond order Taylor series expansion was applied to the model-based
JUD and seen to give a better performance in comparison to the
VTS based JUD.

Recently, unscented transformations (UT) [8] have become a
popular method for ASR. This method has the same idea as DPMC
but works in a more efficient way by deterministically choosing
only a very few important samples. In [9], UT have been adopted
for HMM compensation in a way similar to the standard model
based VTS i.e. applying UT to each HMM mixture. It shows a
recognition performance comparable to DPMC and is much faster.
In this paper, the application of UT to the JUD framework for the
estimation of JUD transforms is proposed. Compared to [9], this is
more advantageous as in this case the UT only needs be conducted
for each regression class and therefore the extra computational cost
introduced can be minimised.

This paper gives an overview of all the above techniques in
JUD and compares them through experiments performed on a
database recorded in a real car environment. To our best knowl-
edge, almost all the results reported so far for UT in the literature
were based on using artificially corrupted speech data and this is
the first paper evaluating this technique on real noisy data. The
experiments reported show that UT is one of the best options for
estimating the JUD transforms as it gives superior performance
both for recognition accuracy and computation cost.

The remainder of this paper is as follows: section 2 gives an
overview of model based JUD and all the techniques employed in
the estimation of JUD transforms; section 3 compares these tech-
niques through recognition experiments; conclusions are drawn in
section 4.

2. Overview of model-based joint uncertainty
decoding

In the classical hidden Markov model (HMM) based ASR, the core
part is the calculation of the HMM state emission probability mod-
elled by the GMM:

p(@]S) = D cmplalm) = > eaN(w;p, 57), (1)
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where x is the clean speech feature, S is the HMM state, and
N (z; pyt, X7) is the Gaussian PDF for the mixture m with mean
Wy, covariance matrix X7 and mixture weight ¢, .

When noise exists in the input speech, the clean speech feature
x is not observable any more. Instead, JUD calculates the output
probability of noisy speech feature y of the mixture m as follows:

p(ylm) = / p(ylz, m)p(aim)dz @

Depending on how the conditional probability p(y|z,m) is
modelled, there exists two JUD methods i.e. feature based and
model based. Feature based JUD trains a front-end GMM over
clean training data and assumes p(y|z,m) Gaussian for each
GMM mixture. Model based JUD uses regression classes [10]
to group HMM mixtures and applies the Gaussian assumption to
each regression class. In [11], these two methods were thoroughly
compared and model based JUD showed much better performance
than feature based JUD.

When model based JUD is the case, each HMM mixture m
is often assigned to a fixed regression class r,,. Therefore, Eq.(2)
becomes

p(ylm) = / p(yl, rm)p(z|m)dz
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In Eq.(4), the clean speech mean p,™ and covariance ™
for each regression class can be easily obtained from clean train-
ing data. The computation of other parameters, i.e. the mean pi,™
and covariance X;™ for noisy speech and the cross-covariance ma-
trix X7 depends on the noisy speech. Given noise estimation,
their computation has to employ certain estimation technique e.g
DPMC, Taylor expansion or UT resulting in different JUD algo-
rithms.

3. JUD with different estimation techniques
3.1. JUD with DPMC

DPMC [12] is a Monte Carlo method. Assuming additive noise
feature n Gaussian distributed with the mean p,, and variance ¥,,,
it generates a series of noise feature samples (n1, n2, .....ns) and
clean speech feature samples (z1, x2, ....xs) based on their indi-
vidual distribution N (n; pun, Xy, ) and N (z; pz™, 35™). Then the
corresponding noisy speech features (y1,y2, ..., ys) are obtained
by virtue of the popular noise corruption formula:

y=xz+h+g(z,n,h) =xz+h+Cln(l +ec_1("7mfh)) (5)

where C' denotes the discrete cosine transformation matrix and h
T

the static features for convolutional noise. Finally, y,™, 3™ and
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Xym are calculated based on the y samples:

1 s
_g;yi

Tm
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Tm 1 . Tm rm\T
Zy/:S_lz(yi_My )(yl_ﬂy )
=1
Tm 1 - Tm Tm
Eyz = S——l Z(yz — Hy )(wl - Mz )T (6)

i=1

In[11], DPMC proved to be very powerful when being applied
for JUD. However, this is at the expense of a very high computa-
tional cost as the number of samples has to be fairly big in order to
have a reasonable estimation in Eq.(6).

3.2. JUD with Taylor series based approximations
3.2.1. JUD with first order VTS

In our previous work in [6], we introduced VTS based JUD where
the first order Taylor expansion is adopted to linearise Eq.(5) and
a closed form solution for the calculation of ™, 3™ and Xy
is obtained. Although it was originally proposed for feature based
JUD, it can be applied to model based JUD in a similar way. The

T

calculation for p,™, Xy and X777 becomes:

ty™ = pg™ + b+ g(pg™, pin, )
s =W, Sim W,k
Yo =W, 55" @
We,, =1+ ig(ui’", fns h)
" ox

where [ is the identity matrix.

Since there is no need to generate a number of samples, there
is no doubt that the VTS based JUD in Eq.(7) is more efficient
than the DPMC based method. However, it is well known that
the Taylor expansion inevitably brings approximation errors and
therefore a degradation in recognition accuracy can be observed

[11].

3.2.2. JUD with the second order approximation

In [7], JUD with first order VTS was thoroughly analysed and the-
oretically proven to be the same as the classical model-based first
order VTS except that the JUD method uses fewer and rougher ex-
pansion points. As a consequence, the VTS based JUD is more
efficient but can not beat first order VTS on recognition perfor-
mance. To overcome this limitation, a new method was introduced
by keeping using the same set of expansion points as in the VTS
based JUD and embedding the second-order Taylor expansion into
the compensation of each HMM mixture. Unlike other methods,
this new technique needs to employ a slightly different formula for
the HMM compensation:

p(ylm) = [Ar,, IN(Arpy + brys g + A 550+ 557) (8)

where A7" is a vector obtained per HMM mixture and all the other
JUD matrices are computed the same way as in Eq.(7) and (4). Ac-
cording to [7], the above formula only introduces a slight increase
in computational cost and the recognition accuracy can exceed the
first-order VTS when the number of regression classes increases
to a certain level.



3.3. JUD with unscented transformation

UT shares a similar idea to DPMC. However, unlike DPMC which
randomly generates a huge number of samples, UT tries to control
the number of samples to a minimum level by deterministically
adopting a limited number of points in the PDF and assigning cer-
tain weights to them. These points, so called sigma points, can be
selected in different ways as described in [8].

In [9], UT has been successfully deployed in ASR to com-
pensate HMM models mixture by mixture. Its recognition perfor-
mance proved to be better than the classical first-order and second-
order VTS however at the expense of increasing the computational
load, which makes it impractical for small footprint systems. This
drawback can be largely mitigated in the JUD framework as UT
only needs to be performed per regression class for the calculation
of p,™, 3y and X377 and the overall increase in the computa-
tional cost is expected to be limited.

Similar to [13], this paper selects the sigma points {z; }7_ for
JUD as follows:

pa™
= ) 9
1 —wo )
N. .
o < EZ) (i=N.+1.2N.) (1)
1 —wo N

where N, denotes the dimension of vector zo, (M ); means the ith
column of matrix M and p = 2N,. The total number of sigma
points is 2N, + 1.

Given all the sigma points, noisy speech samples
(yo,y1,....,yp) are computed by Eq.(5). Then the mean and
variances involved in each regression class for JUD compensation
can be acquired by

P
py" = Z Wiy
=0
P
Tm Tm rm\T
Zy :Zwi(yi_uy )(yl_ﬂy )
=0
p
Tm Tm rm\T
Syr = wilys — py™) (s — pi™) (12)
=0

where the weights are defined as

wo = 1 7NZ/3,’LU¢ = (1 7w0)/(2Nz)

4. Experiments

In this section, we compare the performance of different JUD
methods. Experiments were conducted on the Toshiba in-car
database which was recorded in cars under two driving conditions -
engine-on (ENON) and highway (HW). The ENON condition con-
tains 4401 utterances and has an average SNR 35dB, whereas the
HW condition contains 4582 sentences with SNR around 18dB.
For each noise condition, there are a mixture of small and medium
sized tasks including connected digits, command and control and
city names. To ease the discussion, all the figures in the following
experiments are averaged over all the tasks in each noise condition.
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Method ENON HW  Average

MTR baseline 627 676 6.52
CM baseline 412 6835 3623
JUD-DPMC(10%) 237 559 3.98
JUD-VTS 290  6.41 4.66
JUD-2nd order approx. 1.98 6.37 4.17
JUD-UT 240  5.69 4.04

Table 1: WER (%) averaged over each noise type for different
methods.

The front-end employed in this paper is a 13-dimensional
MFCC including the zeroth coefficient with their delta and delta-
delta components. A triphone HMM with 650 states was trained
on a mixed multi-condition set including 312 hours of data con-
sisting of Wall Street Journal, TIDIGITS, TIMIT and internally
collected noisy training data. There were 12 mixtures for each
speech state in the HMM and 24 mixtures for each silence state,
giving the overall number of mixtures in the HMM around 8000.
A standard multi-condition training (MTR) HMM was first trained
and then refined by joint adaptive training [11]. The final HMM
used for JUD compensation and recognition is a canonical model
(CM) which is treated as noise free. 16 regression classes were
used for JUD for all experiments.

The recognition process is implemented in a two pass mode
similar to [3]. Specifically:

1. The initial parameters (i, >, and up for noise PDF were
estimated from the first and last 20 frames in each utterance.

. VTS then adapted the HMM to generate an initial recogni-
tion hypothesis.

An VTS expectation-maximisation based noise estimation
process [11] was adopted to refine the noise parameters
based on the initial hypothesis.

The refined noise parameters were finally fed into JUD to
compensate the HMM and obtain the final recognition re-
sults. In this paper, only the estimation method is varied,
i.e. DPMC, VTS, second order approximation or UT, for
the computation of the static part of the JUD matrices. The
first-order VTS based method is used for all delta and delta-
delta parts.

Table 1 compares the results for JUD with the different esti-
mation techniques discussed in this paper. Results with the MTR
HMM and the CM HMM without any compensation are listed here
as the baseline.

It is observed that the CM baseline is very poor on the HW
condition compared to the MTR baseline but better on the ENON
condition. When JUD is in place for compensation, a large gain
on the CM HMM can be achieved. Generally speaking, JUD with
DPMC gives the best performance on average among all the tech-
niques. However it should be noted the number of samples in
DPMC for each regression class plays an important role. In ta-
ble 2, different values for the number of samples used in DPMC
are tested, and 10* turns out to be the minimum number of samples
required for the DPMC based JUD to achieve a relatively decent
performance. This is particularly important for the HW condition.

When VTS is engaged, the result for JUD as shown in table 1
becomes much worse than the DPMC based method. This is rea-
sonable as the Taylor expansion introduces approximation errors.



Method #Samples per class ENON  HW  Average
MTR baseline - 6.27 6.76 6.52
JUD-DPMC 10° 242 12.38 7.40
JUD-DPMC 5% 103 237 1017 6.27
JUD-DPMC 10* 2.37 5.59 3.98
JUD-DPMC 10° 2.39 5.61 4.00

Table 2: WER (%) averaged over each noise type for baselines and
JUD-DPMC with different number of samples.

JUD + DPMC VTS UT 2" order
(10%) approxima-
tion
# of times us- 1.6 % 10° 16 848 32
ing Eq.(5)
MIPS 1411 577 587 580

Table 3: Comparison of computational costs.

The second order approximation helps to boost the JUD perfor-
mance largely on the ENON condition which is even better than
the DPMC. However its gain on the HW condition is limited in-
dicating the second order Taylor expansion is still not sufficient
to reduce the Taylor approximation errors to a satisfactory level
in noisier conditions. Finally, UT seems to be a very powerful
method when working together with JUD. Its performance is al-
most as good as DPMC for both conditions.

The computational costs of different methods are given in ta-
ble 3. Two types of measurements are adopted. The first is the
number of times of using Eq.(5) when adapting the HMM once
with each method. As Eq.(5) is believed to be the major cost for
all the JUD methods, this number indicates how costly the estima-
tion part is in the JUD. The second measurement is the CPU cost
required for the final step (step 4) of the two-pass decoding which
was measured in MIPS (million of instructions per second) over
40 utterances with a total length of roughly 107 seconds. Since
this step includes the computation of the JUD matrix and HMM
adaptation as well as recognition, it provides an idea how differ-
ent JUD estimation methods impact on the overall computational
cost during decoding. It can be seen that the computational cost
of DPMC is much higher than the other three techniques for both
measurements. This makes it difficult to deploy in real applica-
tions. The two VTS based JUD methods are very cheap. UT has a
higher cost than VTS, but their overall CPU costs during decoding
are comparable. This is partially because UT is only applied for
each regression class and makes the overall increase of computa-
tional cost trivial. Considering its superior recognition accuracy
as shown in table 1, UT based JUD seems a good option for the
balance between high recognition accuracy and low computational
cost.

5. Conclusions and future work

This paper gives an overview of different techniques for estimat-
ing JUD transforms. These include methods previously presented
in the literature e.g. data-driven PMC (DPMC), first order VTS
and second order Taylor series approximation as well as a new un-
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scented transformation (UT) based technique. These techniques
were compared on a noisy speech database recorded in real cars
under engine on and highway driving conditions. In terms of a bal-
ance between recognition accuracy and computational cost, exper-
iments showed that overall the UT is superior to other techniques
when being applied to JUD.

For less noisy conditions, the second order approximation was
found to yield the lowest recognition accuracy, and has a lower
computational cost than UT based JUD. Combination of these two
noise estimation techniques will be investigated in the future and
is expected to further boost the JUD performance.

6. Acknowledgements

The authors would like to thank Yusuke Shinohara in Corporate
Research and Development Center, Toshiba Corporation, Japan,
for helpful discussions.

7. References

[1] PJ.Moreno, Speech Recognition in Noisy Environments,
Ph.D. thesis, CMU, 1996.

[2] A. Acero, L. Deng, T. Kristjansson, and J. Zhang, “Hmm
adaptation using vector taylor series for noisy speech recogn-
tion,” in Proc.of ICSLP, Sep. 2000.

[3] J. Li, L. Deng, D. Yu, Y. Gong, and A. Acero, “High-
performance hmm adaptation with joint compensation of ad-
ditive and convolutive distortions via vector taylor series,” in
Proc.of ASRU, Dec. 2007.

[4] H.Liao and M.J.F. Gales, “Uncertainty Decoding for
Noise Robust Speech Recognition,” Tech. Rep. CUED/F-
INFENG/TR499, Cambridge University, Oct.2004.

[5] H. Liao and M.J.F. Gales, “Uncertainty decoding for noise
robust speech recognition,” Tech. Rep., Cambridge Univer-
sity, 2004.

[6] H.Xu, L.Rigazio, and D.Kryze, “Vector taylor series based
joint uncertainty decoding,” in Proc.of INTERSPEECH, Sep.
2006, pp. 1125 —1129.

[7] H.Xu and K.K.Chin, “Joint uncertainty decoding with the
second order approximation for noise robust speech recogni-
tion,” in Proc. of ICASSP, 2009.

[8] S.J.Julier and J.K.Uhlmann, “Unscented filtering and non-
linear estimation,” Proc. of the IEEE, vol. 92, no. 3, pp.
401-422, 2004.

[9] Y.Hu and Q.Huo, “An hmm compensation approach using
unscented transformation for noisy speech recognition,” in
Proc. of ISCSLP, 2006, pp. 346-357.

[10] S.Young, HTK: Hidden Markov Model Toolkit V1.5, 1993.

[11] H. Liao, Uncertainty decoding for noise robust speech recog-
nition, Ph.D. thesis, Cambridge University, 2007.

[12] M.J.F.Gales, Model-Based Techniques for Noise Robust
Speech Recognition, Ph.D. thesis, Cambridge University,
1995.

[13] Y.Shinohara and M.Akamine, “Bayesian feature enhance-
ment using a mixture of unscented transformations for un-
certainty decoding of noisy speech,” in Proc. of ICASSP,
2009.



