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Abstract 

One-model speech recognition (SR) and speech synthesis (SS) 
based on a common articulatory movement model are 
described herein. The SR engine has an articulatory feature 
(AF) extractor and an HMM based classifier that models 
articulatory gestures. Experimental results of a phoneme 
recognition task show that the AF outperforms MFCC even if 
the training data are limited to a single speaker. In the SS 
engine, the same speaker-invariant HMM is applied to 
generate an AF sequence, and then, after converting AFs into 
vocal tract parameters, a speech signal is synthesized by a 
PARCOR filter, together with a residual signal. Phoneme-to-
phoneme speech conversion, using AF exchange, is also 
described. 
Index Terms: speech synthesis, speech recognition, 
articulatory features, phoneme-to-phoneme speech conversion 
 

1. Introduction 
Current HMM-based speech recognition (SR) systems have 
achieved acceptable performance in certain limited 
applications. However, because most of these systems use 
spectrum origin features that are often distorted by various 
factors, such as speakers, phoneme contexts, ambient noise or 
distant speech, the development of accurate SR system 
requires a large speech corpus and mixture components. 
    On the other hand, a human infant can acquire a speaker-
independent phone system [1] by listening only to his/her 
parents’ voices. To explain the mechanism that enables such 
linguistic acquisition, a theory of articulatory gestures, in 
which a human perceives a voice by referring to articulatory 
movement, has been presented [2]. In recent SR studies, 
various methods have been proposed to achieve articulatory 
feature (AF) extraction [3],[4],[5],[6],[7], and well-designed 
articulatory-based HMMs have been shown to outperform 
MFCC-based HMMs. In this paper, we present experimental 
results in which the high performance of phoneme recognition 
is achieved using articulatory-based HMMs, or articulatory 
movement (AM) models, even when the training data are 
limited to a single speaker and a mixture number of one. 
    The argument as to whether human speech production and 
perception run on a single system or independently, or two 
systems, has been discussed for quite some time [8], however, 
recent studies in brain science seem to lean toward the single 
system belief [9]. In this paper, we propose a novel method 
that realizes both a SR engine and a speech synthesis (SS) 
engine with a common articulatory movement model, that is a 
one-model SR and SS. A typical HMM-based speech 
synthesizer models a single speaker’s voice using spectrum-
origin features and thus cannot be applied to speaker- 
independent SR[10]. Our proposed method represents speaker- 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

              Figure 1: One-model SR and SS. 

invariant articulatory gestures in an HMM that can generate an 
AF sequence, and, after converting the AF sequence into vocal 
tract parameters with a multi-layer neural network (MLN), a 
speech signal is synthesized by a PARCOR synthesizer 
together with a residual signal [11]. 
    A one-model SR and SS framework enables other 
functionality as well, such as phoneme-to-phoneme speech 
conversion. In this paper, we investigate this functionality by 
exchanging the AF of a phoneme A (B) in a word with another 
AF corresponding to a phoneme B (A). We test them using an 
ABX listening test. 
    This paper is organized as follows. Section 2 explains the 
outline of the one-model SR and SS. Sections 3 and 4 describe 
SR and SS using the common articulatory movement HMMs 
and their experimental results, respectively. Section 5 then 
presents phoneme-to-phoneme speech conversion and the 
result of the ABX test. Finally, Section 6 presents the 
conclusion and suggests future work. 

2. One-model SR & SS based on 
articulatory movement models 

Figure 1 shows an outline of the proposed one-model SR and 
SS based on AM models. In the Figure, the upper block is a 
SR engine and the lower, a SS engine. Both engines use the 
same AM HMMs. The SR engine has an AF extractor with 
three-stage multi-layer neural networks (MLNs), described in 
section 3, that outputs an AF sequence to the AM HMMs [12],  
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[13].  The HMMs represent probabilistic articulatory gestures 
in each mono-phone model.  
    In the SS engine, the same speaker-invariant HMMs 
generate an AF sequence by concatenating mono-phone 
models, and then converting them into vocal tract parameters, 
or PARCOR parameters, using a speaker-specific model. A 
speech signal is synthesized by a PARCOR filter together with 
a residual signal. The proposed one-model SR and SS can also 
output the speech input directly by adding the AF extractor 
output into the AF�PARCOR converter as shown in Figure 1. 
Such functionality is useful for talk-back services in spoken 
dialogue systems, especially when an out-of-vocabulary 
(OOV) word is detected. In Section 5, the same output from 
the AF extractor is modified and then input to the 
AF�PARCOR converter for corrective training of 
pronunciation. 

3. Speech Recognition Based on 
Articulatory Movement HMMs 

3.1 Articulatory Feature Extraction 
The proposed SR engine is divided into two parts: an AF 
extractor that converts input speech into AFs, and an 
articulatory movement HMM classifier. Figure 2 shows the 
AF extractor. Input speech is sampled at 16 kHz and a 512-
point FFT of the 25 ms Hamming-windowed speech segment 
is applied every 10 ms. The resultant FFT power spectrum is 
then integrated into 24-ch BPFs output with mel-scaled center 
frequencies. At the acoustic feature extraction stage, the BPF-
outputs are first converted to local features (LFs) by applying 
three-point linear regression (LR) along the time and 
frequency axes [14], [15], [16], [13]. LFs represent variation in 
a spectrum pattern along two axes. After compressing these 
two LFs, from 24 dimensions into LFs in 12 dimensions, using 
discrete cosine transform (DCT), a 25-dimensional (12 Δt, 12 
Δf, and ΔP, where P stands for the log power of a raw speech 
signal) feature vector, called a LF, is extracted. Our previous 
work shows that a LF is superior to an MFCC when used as 
input to MLNs for the extraction of AFs, or distinctive 
phonetic features (DPFs) [7].  
    The LFs are then entered into a three-stage AF extractor 
[13]. The first stage extracts 45-dimensional AF vectors from 
the LFs of the speech input, using two MLNs. The first MLN 
maps acoustic features, or LFs, onto discrete AFs and the 
second MLN reduces misclassification at the phoneme 
boundaries by constraining the AF context. Figure 3 shows an 
example AF sequence for the utterance /jiNkoese (artificial 
satellite)/. In the figures, "Solid thin line" and "Solid bold line" 
represent "ideal segmentation" and extracted AF sequences at 
the first stage, respectively. The second stage incorporates 
Inhibition/ Enhancement (In/En) functionalities to obtain 
modified AF patterns [13]. The third stage decorrelates three 
context vectors of AFs using the Gram-Scmidt (GS) 
orthogonalization procedure [15] before connecting with the 
HMM-based classifier.  

3.2 Evaluation of SR 
The proposed AF-based HMMs are compared with MFCC-
based HMMs. A standard MFCC feature set consists of a 
vector in 38 dimensions (12 MFCC, 12 Δ and 12 ΔΔ 
coefficients of MFCC, Δ and ΔΔ coefficients of the log energy 
of the speech signal). On the other hand, the AF extractor 
outputs an AF-vector in 45 dimensions (15 preceding context 
AF patterns, 15 current frame AF patterns, and 15 following 
context AF patterns) for each input frame.  

 
 

 
 
 
 
 
 
 
 
 
 
 
                    Figure 2: Articulatory feature extraction. 

 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
       Figure 3: Articulatory feature sequence. 
                         : /jiNkoese/ (artificial satellite) 
 

��  Speech Data:  
D1: Training data set-1 for MLNs 
   A subset of the Acoustic Society of Japan (ASJ)  
   Continuous Speech Database comprising 4,503 sentences  
    uttered by 30 male speakers (16 kHz, 16 bit) is used [17]. 
D2: Training data set-2 for HMMs 
    This training data set comprises 5,000 JNAS [18] sentences  
    uttered by 33 male speakers (16 kHz, 16 bit). 
D3: Test data set 
    The test data set comprises 2,719 JNAS sentences uttered  
     by 17 male speakers (16 kHz, 16 bit). 

 
�  Experimental Setup: 
    The Japanese phoneme correct rate for the D3 data set is 
evaluated using an HMM-based classifier. In the experiments, 
The D2 data set is used to design 38 Japanese monophone 
HMMs with five states, three loops, and left-to-right models. 
Input features for the classifier are MFCC features or AFs. In 
the HMMs, the output probabilities are represented in the form 
of Gaussian mixtures using diagonal matrices. The number of 
mixture components in the HMM is varied between 1, 2, 4, 8, 
and 16. In this experiment, we do not implement language 
models, because we focus our research on the design of an 
accurate phonetic typewriter. 

 
�  Experimental Results and Discussion: 
    Figure 4 shows the experimental results of the AFs by 
comparison with MFCCs in a phoneme recognition task. The 
proposed AFs exhibit an almost equivalent level of 
performance with the different numbers of speakers used for 
training, as well as the different number of mixtures in HMMs. 
This result suggests that the extracted features are speaker 
invariant parameters. 
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    Figure 4: Phoneme correct rate  

                   vs. number of mixtures and enrolled speakers. 
 

4. Speech Synthesis Based on 
Articulatory Movement HMMs 

A typical HMM-based speech synthesizer models a single 
speaker’s voice using features originated in spectrum [10]. The 
proposed SS engine shown in Figure 5 introduces speaker-
invariant aticulatory movement models to HMMs that are 
commonly used for a SR engine. HMMs generate AF 
sequences by concatenating mono-phone models, and then 
feeding the average AF vectors in each state into an AF-
PARCOR converter. The current frame data of the inputs of 
the converter, AF(m, t), m=1,2,…15, are combined with the 
other two frames, which are three points prior to and following 
the current frame (AF(m, t-3), AF(m, t+3)) to form 
articulatory movement. 

In the AF-PARCOR converter, the AF sequence is converted 
into a set of vocal tract parameters, or PARCOR parameters 
[11], which are k-parameters in an LPC vocoder, related to the 
reflection coefficients of a vocal tract. The PARCOR 
parameters are orthogonalized with respect to each other. The 
AF-PARCOR converter is designed with a three-layer neural 
network (MLN). The MLN has 45 input units (15-AFs � 3-
frames) corresponding to a set of context-dependent AF 
vectors (a preceding context, AF(m,t-3), a current context, 
AF(m,t), and a subsequent context, AF(m,t+3)), each in 15 
dimensions. The MLN has 39 output units (13-PARCORs � 3-
frames) corresponding to a set of context-dependent PARCOR 
parameters. The hidden layer of the MLN has 450 units. 

 When training the MLN, the initial set of weighting 
coefficients is initially trained with AF data, uttered by 
multiple speakers. These are then adapted to a specific user 
using his/her voice. A speech signal is finally synthesized 
using a PARCOR synthesizer.  

4.3 Evaluation of Synthetic speech 
To investigate voice quality of the SS engine, the following 
three data points are compared. The initial MLN of the AF-
PARCOR converter is trained with 5,000 JNAS sentences, 
which constitutes the D2 data described in section 3. It is then 
adapted to a new male speaker.  

Figure 6 shows MOS of synthetic speech with:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 5: HMM-based speech synthesis  
                  using articulatory movement model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 6: MOS of Synthetic speech generated with  
articulatory movement HMMs.  

                 (voice source is residual signal) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7:  Sound spectrogram of synthetic speech. 

  
(1) no adaptation,  
(2) two sentences adaptation,  
(3) thirty two sentences adaptation. 
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Articulatory features (Number of Enrolled Speakers (male only) : 1 � 2 � 4 � 8 � 33)

MFCC   (Number of Enrolled Speakers (male only) : 1 � 2 � 4 � 8 � 33 � 100 �)

4.1 HMM-based speech synthesis using articulatory 
movement models 

4.2 Conversion from articulatory fatures (AFs) to 
PARCOR parameters 
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In the MOS test, eleven subjects heard the original speech 
of the male speaker before testing took place. Residual signals 
of the PARCOR analysis are used for the voice source in this 
test. 

Figure 6 shows the result of a MOS test.  Adaptation with 
short sentences in the AF-PARCOR converter is found to be 
effective, however further improvement is needed. Figure 7 
shows the sound spectrograms that result from (a) no 
adaptation, (b) adaptation with two sentences, and (3) original 
speech (target speaker).  
 

5.  Phoneme-to-phoneme speech conversion  

  The one-model SR and SS framework enables easy 
phoneme-to-phoneme speech conversion by exchanging the 
AFs of phoneme A to the AFs of phoneme B. Modified AF 
sequences are input to the AF-PARCOR converter, and speech 
sound is then output through the PARCOR filter, descrived in 
Figure 5.  

Figure 8 shows the results of our experiments, where three 
phonemes, /b/, /p/, and /m/ are converted into /d/, /t/, and /n/, 
respectively [19]. In the ABX listening test, voice sources are 
applied with each residual signal of the original phoneme (b, p, 
m). Twelve subjects are then asked to judge the phoneme. The 
results show that the proposed method of using a combined, 
one-model SR and SS can deliver satisfactory phoneme-to-
phoneme speech conversion, although further improvement is 
needed. Such functionality is useful for pronunciation training, 
where users’ incorrect pronunciations can be compared with 
correct ones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: HMM-based speech synthesis  
                    using articulatory movement model. 
 
 
 

6. Conclusion 
 
    One-model speech recognition and synthesis, based on 
common articulatory movement models were proposed herein. 
The articulatory movement HMMs showed high recognition 
performance, even when the training data are limited to a 
single mixture from a single speaker. In the SS engine, the 
same speaker-invariant HMMs generate AF sequences, and 
they are then converted into PARCOR parameters using a 
speaker-adapted MLN. Synthetic speech is realized by feeding 
the parameters to a PARCOR synthesizer.  

    Future work will include the improvement of voice quality 
in the SS engines, applying a CELP approach, as well as 
implementation of SR engines based on articulatory movement 
HMMs. 
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