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Abstract
In this paper, we present a systems approach for channel mod-
eling of an Automatic Speech Recognition (ASR) system. This
can have implications in improving speech recognition com-
ponents, such as through discriminative language modeling.
We simulate the ASR corruption using a phrase-based machine
translation system trained between the reference phoneme and
output phoneme sequences of a real ASR. We demonstrate that
local optimization on the quality of phoneme-to-phoneme map-
pings does not directly translate to overall improvement of the
entire model. However, we are still able to capitalize on contex-
tual information of the phonemes which a simple acoustic dis-
tance model is not able to accomplish. Hence we show that the
use of longer context results in a significantly improved model
of the ASR channel.
Index Terms: Automatic Speech Recognizer, Channel Model-
ing, Finite State Transducer

1. Introduction
In this paper, we present a model of ASR channel errors. An ac-
curate system of phoneme-sequence generation from text input
(a phoneme pseudo-ASR) will allow for evaluation of alterna-
tive language models, without the need for acoustic data. Such
a model can be useful in generating data for training discrimi-
native language models [1], and also for studying the channel
characteristics of the ASR.

As is well known, an ASR system can be viewed as a
noisy channel, since its output (e.g. the 1-best hypothesis) is
a noisy version of the clean reference transcription. Kurata et
al. [1] proposed to model this channel using a simple phoneme
weighted finite state transducer (FST), coined “pseudo-ASR”.
This model is constructed with each phoneme mapping to an-
other phoneme or epsilon/NULL transition with a certain prob-
ability. These transition probabilities are computed from trained
single-Gaussian monophone acoustic models, by finding the
Bhattacharya distance between the Gaussians at the central state
of the 3-state left-to-right Hidden Markov Model (HMM). The
transition probability is computed as follows:

P (pj |pi) = exp(−BDij)P
k exp(−BDik)

(1)

where pi and pj represents two phonemes, and BDij is the
Bhattacharya distance between corresponding acoustic mod-
els. In fact, most of the approaches to distortion modeling
[2, 3, 4] utilize the ASR confusion matrix, or some distance
between acoustic models (Kullback-Leibler divergence, Maha-
lanobis distance or Bhattacharya distance). Hence, little or no
contextual information is utilized while training the distortion
model.

We propose an alternative way to do this channel modeling
using a Statistical Machine Translation (SMT) system to learn
the mappings between the reference phoneme sequence and the
ASR-corrupted phoneme sequence. By doing so, we are able to
capitalize on contextual information in the phoneme sequences.
The SMT system has been used previously to learn the letter-
to-phoneme rules [5], and has been demonstrated to be signifi-
cantly better than single phoneme to letter alignments.

The paper is organized as follows: Section 2 gives the mo-
tivation behind the chosen methodology. Section 3 provides a
detailed description of our modeling approach. Our experimen-
tal setup and results are presented in Section 4, along with inter-
pretations. The paper concludes in Section 5, with a discussion
of possible applications and extensions of this work.

2. Methodology
The main motivation of the paper stems from the following ra-
tionale: instead of modeling just the relation between phonemes
pj and pi as P (pj |pi), why not model P (pjnj1 |p

im
i1

), by explic-
itly taking into consideration the phoneme context when learn-
ing the mappings. pjnj1 and pimi1 are compact representations
for the phoneme sequences {pj1 , ..., pjn} and {pi1 , ..., pim}
respectively. pimi1 is the input phoneme sequence and pjnj1 is
the ASR corrupted phoneme sequence. Note that the phoneme
set can also include the NULL phoneme which represents an
insertion or deletion error. In practical ASR systems, we will
have

0 ≤ i1 ≤ j1 ≤ im ≤ jn (2)
to maintain causality. However, we relax this assumption in
our case since we will be learning the mappings from the en-
tire training data set, which will allow for learning non-causal
mappings. Note that our prediction problem can be cast as the
following:

pjn = argmax
p
jm
j1

P (pjnj1 |p
im
i1

) (3)

Note that (3) can be reformulated using Bayes’ theorem:

pjn = argmax
p
jm
j1

P (pimi1 |p
jn
j1
)P (pjnj1 ) (4)

where P (pjnj1 ) is given by the language (phonotactic) model
(LM) on the target corrupted phonemes.

We see that the Machine Translation framework proposed
by Brown et. al. [6] lends itself well in representing the above
and it is therefore our chosen approach for learning multiple
phoneme-phoneme mappings.

3. System Description
Having explained the theoretical motivation behind this work,
we proceed to outline the actual implementation of the system.
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Figure 1: The block diagram of the proposed ASR system corruption channel model.

The training stage follows this procedure:

• Statistical Phoneme Transducer (SPT) model:
– Phoneme decoding using Phoneme-ASR
– Train a Statistical Phoneme Transducer (SPT) on
clean phoneme sequence as reference and ASR-
corrupted phoneme sequence as target

• Build phoneme-word transducer using pronunciation
dictionary

• Build word transition transducer (FST encoded LM)
Using the above modules the channel model can be repre-

sented as in Fig. 1:

• Text-Phoneme conversion
• Decoding through the SPT. Output a phoneme lattice
• Phoneme-Word transducer. Output a word lattice
• Decode through LM transducer (FST-LM). Output the
final word-lattice or N-best list

The system can be represented as a single FST with the
composition of the phoneme lattice from the SPT with the
Phoneme-Word transducer and the Language Model transducer
in order. The best word sequence can be obtained by the Viterbi
algorithm over the composed lattice, giving us the N-best lat-
tice.

The text-to-phoneme conversion can be carried out by sim-
ple dictionary look up approach. While our initial experi-
ments assume no OOVs present, the extension to handle them
is straightforward: the mappings can be adequately learnt by
building another transducer system on the letter-to-sound rules
[5].

An SPT is trained using the MOSES [7] system on paral-
lel phoneme data, with the original phoneme sequence as the
source data and the ASR-corrupted phoneme sequence as the
target data. We adopt the phrase-based translation model for
this purpose. Our baseline model will be the SPT model where
the phrase table is restricted to a unigram mapping. We will ex-
plain why this is similar to Kurata’s simple phone-to-phone FST
[1]. Kurata’s model is based on a distance measure of the repre-
sentative phoneme Gaussians, which is a phoneme confusability
based metric [2, 3, 4]. When we restrict the phrase-table length
to the unigram, the SMT system is then finding the phone-to-
phone transition probabilities P (pi|pj) by essentially comput-
ing the counts when it sees the mapping and then normalizing
the counts with some smoothing. This will be equivalent to
learning the probability distribution from the confusion matrix
of the ASR by count-and-divide, and the confusion matrix is
closely correlated with the distance between the Gaussians cor-
responding to the phonemes, and arguably more accurate.

The main advantage of using the SMT is that we can vary
this phrase table length, which we will from the unigram to the
7-gram. Another advantage of the SMT is that we will be able
to smooth the transition probability with a phoneme language
model built on the ASR corrupted phoneme sequences. This

Figure 2: The MOSES (7-gram phrase table, training set’s tar-
get is phoneme output from ASR 1-best) output lattice for input
phoneme “HH AH” for maximum of 5 hypotheses to each stack

will allow us to prune the lattice, and also make use of context
information to result in better mappings.

There are two ways of proceeding with the SMT system
built. The first is that we can encode the phrase table and the
phoneme language models into finite-state transducers and then
compose a series of finite-state transducers to get the final sys-
tem. However, such a long composition will not be efficient,
thus we make use of the lattice output from the MOSES de-
coder. Figure 2 shows an example of such a lattice. The output
of MOSES can be in the form of an N-best list or a lattice, which
we can easily convert into a finite-state-acceptor (FSA) for use
by the subsequent components.

By default lattice generation with MOSES results in ex-
tremely large lattices since in addition to containing all the pos-
sible paths, it also contains redundant paths resulting in same
phoneme sequences generated from different phoneme parti-
tions. A solution to this will be to use the cube pruning available
in the MOSES system. We prune the lattice to have a maximum
of 10 hypotheses at each stack, where each stack corresponds
to each target phoneme symbol. This can be suitably adjusted
according to the computing resources available.

For our SPT module we chose monotone decoding, where
the distortion is 0. This is because the ASR’s decoding does not
allow for the interchanging of phonemes, thus the SMT has to
model this aspect too.

The next component in our corruption model is the
phoneme-word transducer. This is simply a finite state trans-
ducer which maps input phonemes to legitimate words in the
dictionary. An issue with a simplistic transcription of phoneme
to words is that there might be a phoneme lattice which does
not contain the exact phoneme paths that maps to words in the
dictionary. Thus we have to allow for deletions of phonemes
in our transducer. However, to ensure that we do not delete
phonemes arbitrarily, we introduce a penalty to the deletion.
Thus, all the legal phoneme strings will map to words in the
dictionary with probability 1, while deletions will happen with
probability 10−10.

The third component of our corruption model is the Lan-
guage model (LM). The language model will score all the dif-
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ferent word sequences and return the sequence which has the
highest probability. The LM can be represented as an FST [8].
We first use SRILM to build our LM, and then converted it to
OpenFST format [9]. One caveat is that SRILM language mod-
els make use of failure transitions which is essentially equiva-
lent to an if-else condition. However, finite-state-machines are
all probabilistic in nature. One solution outlined [8] is to replace
the failure transitions with epsilon transitions, and to make sure
that the backoff probabilities are smaller than the higher order
N-gram probabilities by appropriate smoothing. In the tri-gram
language model, this will be P (z|x, y) > α(x, y) ∗ P (z|y)
where α(x, y) is the back-off weight for the bigram (x, y). In
practice, there will be some back-off weights where this par-
ticular condition is not satisfied, but its number is insignifi-
cant compared to the total number of back-off weights. Thus
the epsilon-transition is a good approximation to the failure-
transition model.

4. Experimental results
We train a phoneme recognition system on a portion of the Wall
Street Journal (WSJ) corpus of 16.6 hours of data. This gave
a phoneme error rate (PER) of 39.9%. We then decoded a set
of 3361 phoneme sequences which have length between 1 and
70 in length to get the ASR corrupted phoneme output. The
reason why we keep the phoneme sequences to be between 1
and 70 in length is because we will be using GIZA [10] to build
our phoneme alignments, and keeping them within this length
span will result in a faster runtime. We will use 361 of those
sequences for our test set, and the rest for training (2500) and
tuning (500).

We will be using the standard evaluation techniques for
evaluating the goodness of our mapping schemes, namely
BLEU score and Word Error Rate (WER). The BLEU score
and WER will be computed with the real ASR’s output as the
reference, and the pseudo-ASR’s output as the hypothesis.

Note that since we are dealing with vocabulary size of only
39 English phonemes, the coverage of the training set is suf-
ficient for learning phoneme-to-phoneme mappings. Table 1
shows a 10-fold comparison of the n-gram coverage of 90% of
the training data versus the full training data set.

The MOSES translation system has a tuning option which
uses discriminative training to adapt weights like the LM
weights, reordering weights etc. This discriminative training
is optimized on the BLEU metric, and is not guaranteed to im-
prove the PER/WER. For example, for the default phrase ta-
ble length of 7-grams, we see that the BLEU score obtained is
42.83 and the PER is 36.1 without tuning, and the BLEU score
obtained is 43.09 and the PER is 36.6 with tuning. Thus, we
see that tuning leads to an improvement in the BLEU metric,
but at the same time, damages the PER. Thus, for the evalua-
tion purposes of this paper, we will be using the default weights
that MOSES starts out with (flat initialization). Although in the
case of the ASR channel model we are more interested in the
phoneme and subsequently word error rates, for comparison we
will be presenting figures of the BLEU metric as well. We use
BLEUP and BLEUW to denote phoneme and word BLEU eval-
uations respectively.

Table 2 shows the results of our evaluation of the 1-best
output of the SPT with respect to the 1-best output of the ASR
at the phoneme level. We see that for increasing N-gram length
of the phrase table, which means increasing phoneme context
information, we see that the performance of the mappings im-
prove. The BLEUP score is the highest with the 7-gram model

Table 1: 10-fold comparison of the N-gram coverage of 90% of
the training data versus the full training data set.

N-gram
order Coverage

1-gram 1.00
2-gram 0.99
3-gram 0.95
4-gram 0.90
5-gram 0.87
6-gram 0.86
7-gram 0.85

Table 2: Evaluation of our corruption model quality at the
phoneme level trained on 1-best ASR output
SPT order
for phrase
table and
LM

BLEUP
Score

BLEUP
% gains
over
baseline

PER

PER
% gains
over
baseline

1-gram 40.45 0.0000 37.3 0.00
2-gram 42.04 3.931 36.5 2.14
3-gram 42.49 5.043 36.3 2.68
4-gram 44.42 9.815 35.4 5.09
5-gram 44.54 10.11 35.2 5.63
6-gram 44.69 10.48 35.2 5.63
7-gram 44.97 11.17 35.1 5.90

having a 11.17% relative performance improvement over the
unigram baseline. Also, the PER falls from 37.3% to 35.1%.

The above SMT is trained on the 1-best output of the ASR.
Since our goal is to model the corruption channel of the ASR,
we would like to see if training on more than the 1-best could
lead to a substantial improvement of our model quality. Thus,
we also train the SMT on the 3-best list from the ASR output on
the target phoneme side. For the source phonemes, we simply
duplicate the phonemes 3 times.

Table 3: Evaluation of our Corruption Model quality at the
phoneme level trained on the 3-best ASR output
SPT order
for phrase
table and
LM

BLEUP
Score

BLEUP
% gains
over
baseline

PER

PER
% gains
over
baseline

1-gram 40.45 0.0000 37.3 0.00
2-gram 42.10 4.079 36.5 2.15
3-gram 40.08 -0.9147 39.2 -5.09
4-gram 43.43 7.367 36.1 3.22
5-gram 43.33 7.120 36.1 3.22
6-gram 43.40 7.293 36.2 2.95
7-gram 43.49 7.515 36.1 3.22

Table 3 shows the evaluation results for the training set with
the ASR 3-best output. Here, the best performance is achieved
with the 7-gram with a BLEUP score of 43.49 and a PER of
36.1%. We see that the BLEUP and PER performances are in
general lower than that trained from the 1-best output in Table 2.
This is because since we are training on the 3-best output from
the ASR, the SMT is learning more of the confusion mappings,
which can result in a noisier phoneme output. The behavior of
the results in this table is also more erratic, but generally shows
the same overall increasing trend in performance as in Table 2.

In conclusion, we see that the optimal strategy to match the
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output of the ASR with maximal BLEUP score and lowest PER
at the phoneme level is to train the SMT on the ASR 1-best,
with larger phrase table limits.

We will now evaluate the n-gram MOSES models trained
on the ASR 1-best at the word level, by composing the SMT
lattice generated with the phoneme-word transducer and word
LM as outlined in Section 2. Here we will use BLEUW score
and WER as our evaluation metric. For the reference text, we
trained an ASR based on the WSJ corpus, with a word error rate
(WER) of 23.3%, on 88 hours of data.

Table 4: Evaluation of our Corruption Model (trained on the
ASR 1-best output) quality at the word level from the complete
system output for 1-gram (baseline) and higher order N-grams
SPT order
for phrase
table and
LM

BLEUW
Score

BLEUW
% gains
over
baseline

WER

WER
% gains
over
baseline

1-gram 67.45 0.000 16.3 0.00
2-gram 67.51 0.0890 15.6 4.29
3-gram 68.18 1.082 14.7 9.82
4-gram 65.79 -2.461 16.9 -3.68
5-gram 64.91 -3.766 17.8 -9.20
6-gram 64.49 -4.388 18.1 -11.0
7-gram 63.76 -5.4707 18.9 -16.0

The runtimes for the decoding through the entire system
increases with the number of N-grams. This is because the
phoneme lattice gets more complicated and the composition of
all the lattices is more resource intensive.

We see that from the results in Table 4, the 3-gram phrase
table gives the highest BLEUW score of 68.18 and lowest WER
of 14.7. We see that while increasing the phrase table length
implies increased accuracy in phoneme mapping from Table 2,
increasing the phrase table length does not imply a uniform in-
crease in the accuracy on the system as a whole. However, we
see context still helps the accuracy in this case. We see the 2,
3-gram models still outperforms the baseline result of 1-gram
model (no context information). However, for the 4, 5, 6 and
7-gram models, the baseline gives a better result. The reason
why the accuracy might decrease in the case of longer context
is because the SMT might not have seen enough training data
to adequately learn enough of the higher-gram mappings. This
would result in a certain amount of overfitting, which will result
a degraded performance in terms of BLEUW and WER. Thus,
when we are building a corruption model, we will have to tune
for the optimal number of N-grams to use in the phrase table
based on the amount of training data we have.

5. Conclusion and Extensions
We demonstrate that phonemic context information is an im-
portant factor in improving the quality of our ASR corruption
model. We also show that local optimization on the BLEUP
score and PER of the phoneme translation/mapping does not
correspond to an increased performance of the system as a
whole, but however, context information still helps in improv-
ing our corruption model. We see that in our case, the 3-gram
model gives the best performance in terms of BLEUW score and
WER at the word-level output of the corruption model.

As discussed in the paper, being able to simulate output of
the ASR channel is the first step in studying the channel prop-
erties of the ASR in greater detail.

For example, in applications where large amounts of ASR
output data is needed, it is often impractical to collect such
large amounts of transcribed audio. However, an ASR chan-
nel model allows generation of massive amounts of corrupted
ASR-like output, only limited by the amount of text we have.
Only a small collection of acoustic data for training the chan-
nel model system is necessary. One application is in training
the machine translation component of a speech-to-speech (S2S)
system, where we can incorporate the uncertainty of the source
language in the translation model. Another application for this
model is to use lattices generated from the channel model to
train a discriminative Language Model system like in [1] and
evaluate if the merits of having a more accurate ASR channel
simulation would yield better Language Models.
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