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Abstract
In this paper we show how the robustness of multi-stream
multi-layer perceptron (MLP) acoustic models can be increased
through uncertainty propagation and decoding. We demonstrate
that MLP uncertainty decoding yields consistent improvements
over using minimum mean square error (MMSE) feature en-
hancement in MFCC and RASTA-LPCC domains. We intro-
duce as well formulas for the computation of the uncertainty
associated to the acoustic likelihood computation and explore
different stream integration schemes using this uncertainty on
the AURORA4 corpus.
Index Terms: uncertainty propagation, observation uncer-
tainty, MLP, multi-stream

1. Introduction
A simple method to attain robust automatic speech recognition
(ASR) is to apply speech enhancement in the short-time Fourier
transform (STFT) domain as an independent pre-processing
step. As depicted in Fig. 1, left, speech enhancement in STFT
domain provides a point estimate of the clean STFT of a speech
signal given the observed noisy STFT. This is followed by the
extraction of features, e.g. Mel-Frequency cepstral coefficients
(MFCCs), from the point estimate. As depicted in Fig. 1, right,
the ASR system determines the acoustic likelihood of the ex-
tracted features for a set of acoustic units, from which words
are composed. The most likely word sequence for the given
features is then determined in the decoding stage.

One method to improve the integration of speech enhance-
ment and ASR systems is STFT uncertainty propagation (STFT-
UP) [1]. Let X denote a single analysis frame of the STFT of
the clean signal. Let X̂ be its point estimate obtained from the
STFT frame of the observed noisy signal Y. Finally, let f()
denote a vector valued non-linear feature extraction. STFT-UP
replaces the point estimate X̂ by a random variable distributed
according to a posterior distribution p(X|Y), which reflects the
residual uncertainty after enhancement. Applying the feature
extraction f() to this variable results in a posterior distribution
of the speech features attained by solving

p(x|Y) =

∫

CK

δI(x− f(X))p(X|Y)dx (1)

where δI is the multivariate delta, K is the number of fre-
quency bins considered and I is the dimensionality of the fea-
tures. STFT-UP provides various approximations to compute
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Figure 1: Left: Speech enhancement and feature extraction.
Right: Acoustic likelihood computation and decoding. Interme-
diate variables for conventional systems (left) and uncertainty
propagation and decoding systems (right) provided.

this posterior for MFCC and RASTA-LPCC feature extrac-
tions among other [1]. In particular, if the posterior after en-
hancement p(X|Y) is computed from a Wiener filter, it can
be demonstrated that the mean of p(x|Y) is a minimum mean
square error (MMSE) estimate directly in feature domain [2]. In
principle, the acoustic likelihood can be directly computed from
this MMSE estimate. However, unlike other MMSE estimators
in feature domain e.g. [3], STFT-UP provides the whole pos-
terior associated to that estimate p(x|Y). This is equivalent to
the posterior obtained through ALGOQUIN [4] or other similar
methods and can thus be combined with observation uncertainty
techniques. The simplest of these techniques is to compute the
expected likelihood with respect to the uncertain features pos-
terior given by

E{p(x|cn)} =

∫

RI

p(x|cn)p(x|Y)dx (2)

if p(x|cn) was to be a conventional Gaussian mixture acoustic
model, solving Eq. 2 yields a simple variance compensation rule
introduced in [5] which is also known as front-end uncertainty
decoding (UD)1.

1Note that UD is usually derived as an approximation of the mod-
ified Bayesian decoding rule for ASR [6], rather than as the expected
likelihood.
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In the case considered in this paper, however, multi layer
perceptron (MLP) based acoustic models are used. The likeli-
hood is computed in this case by using

p(x|cn) ∝ p(cn|x)

p(cn)
(3)

where p(cn) is the phonetic class prior modeled by a categor-
ical distribution and p(cn|x) the phonetic class posterior mod-
eled with an MLP. In [7], two approximate solutions to compute
the expected likelihood in Eq. 2 for MLPs were introduced and
are here referred as MLP uncertainty decoding (MLP-UD). The
experiments in [7] were however carried with a posterior deter-
mined from oracle information which casted some doubts over
its application to real scenarios.

This paper demonstrates the applicability of MLP-UD to
real scenarios by estimating the feature posterior p(x|Y) from a
Wiener filter using STFT-UP. Apart from the MMSE-MFCC es-
timator introduced in [2] an MMSE-RASTA-LPCC estimator is
here used as a second stream. Furthermore, solutions are intro-
duced to compute the variance associated to the expected like-
lihood computation in Eq. 2. The use of this variance to weight
stream integration is also explored. Results on the AURORA4
corpus show that MLP-UD consistently outperforms conven-
tional point estimates. The integration of uncertain streams also
provides promising results.

2. Piecewise Exponential Solution to
MLP-UD

2.1. Reviewing the Expected Likelihood Computation

A multilayer perceptron is a non-linear function obtained by
concatenation of successive layers of nodes. The nth node of
each layer computes first a weighted sum of all node outputs
from the previous layer zn. After this, a saturation non-linearity
is applied, the most typical being the sigmoid. The MLP-UD
solution proposed in [7] assumed that each node output after the
weighted sum zn could be modeled as an independent Gaussian
variable due to the central limit theorem

zn ∼ N (µzn ,Σzn). (4)

This decomposes the solution of Eq. 2 into successively com-
puting mean and variance after each layer of the MLP. The only
pending problem is computing the first and second moments of
a Gaussian variable transformed through the sigmoid function.
For this purpose a piecewise exponential approximation of the
sigmoid was used

1

1 + e−zn
≈ 2zn−1u(−zn) + (1− 2−zn−1)u(zn) (5)

where u(x) is the unit step function. For this approximation,
exact closed form solutions can be derived for the propagation
of the mean

E{sig(zn)} ≈ 1

2
· Ω(ln(2)µzn , ln(2)2Σzn)

− 1

2
· Ω(− ln(2)µzn , ln(2)2Σzn)

+ φ(0,−µzn ,Σzn) (6)

and second order central moment

E{sig(zn)2} ≈ 1

4
· Ω(2 ln(2)µzn , 4 ln(2)2Σzn)

+
1

4
· Ω(−2 ln(2)µzn , 4 ln(2)2Σzn)

− Ω(− ln(2)µzn , ln(2)2Σzn)

+ φ(0,−µzn ,Σzn) (7)

where φ is the cumulative density function (CDF) of the Gaus-
sian variable and Ω is the partial expectation of the exponential
of a Gaussian variable, which also depends on φ.

One of the advantages of this propagation approach is that
its computational cost is low and scales linearly with the number
of nodes, leading to real time performance on a Matlab imple-
mentation.

2.2. Variance Associated to the Expected Likelihood

The objective of the approach presented in this paper is to de-
rive the variance associated to the MLP posterior computation
implicit in Eq. 2 when using the piecewise exponential approx-
imation. That is

λn = Var{p(cn|x)}. (8)
This variance can then be used in posterior steps like decod-
ing, although in this paper we explore its use only for stream
integration. For this purpose it is first necessary to consider an
additional step which was ignored in [7]. In order to provide a
normalized output, the sigmoid of the last layer of an MLP is
usually replaced by a soft-max transformation

p(cn|x) =
ezn∑J
n′ ezn′

= exp (zn − log(m)) (9)

where J is the total number of layer nodes and m the normal-
izing denominator. Since in [7] only the expected likelihood
was needed, soft-max was applied directly to the node means
µzn . However, it is also possible to approximate the transfor-
mation of a Gaussian variable through the soft-max transfor-
mation. Transforming a Gaussian variable through the expo-
nential leads to the well known log-normal distribution. The
distribution of zn − log(m) is however unknown. It is tempt-
ing to think that since m is a sum of independent log-normal
distributions it is approximately log-normal, and thus zn and
log(m) are jointly Gaussian. This approximation was imple-
mented but led to high computational costs with little improve-
ment. The approach used here instead a simplification which
neglects the uncertainty of the normalization denominatorm, or
equivalently considers the term subtracted to the exponent in the
leftmost expression in Eq. 9 as a deterministic constant. Since
subtracting a constant from a Gaussian variable does only alter
its mean the resulting variance is the variance of a log-normal
distribution given by

Var{p(cn|x)} ≈ (exp (Σzn)− 1)

· exp (2µzn − log(m) + Σzn) . (10)

The equivalent assumption can be here used to compute the
mean of the propagation through the soft-max. This led how-
ever to little improvements over using the soft-max of the mean
and was left out of the experimental results.

3. Multi-stream speech recognition
Multi-stream processing is a successful approach to enhance the
generalization capability of speech recognizers. In HMM/MLP
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hybrid recognition systems multi-stream combination can be
very efficiently implemented at the probability level combining
the posterior probabilities obtained with several MLPs.

3.1. MLP posterior combination

Our in-house speech recognizer implements posterior multiple-
stream combination based on the product rule like in [8] except
for the normalization terms. The product rule can be general-
ized to a geometric mean combination rule, that is:

p(cn|x1:S) =

∏S
s=1 p

ws(cn|xs)
pS−1(cn)

(11)

where x1:S = {x1, . . . ,xs, . . . ,xS} is the set of S feature
stream observations, p(cn|x1:S) is the result of combining the
posterior probabilities p(cn|xs) of every stream, p(cn) is the
class prior, andws are exponential weights for each stream such
that

∑S
s=1 ws = S. These weights ws represent the reliability

or confidence of the posterior estimations provided by each fea-
ture stream. Several approaches to stream weight estimation
can be found in the literature. For a review of some of these
methods refer to [8].

3.2. Uncertainty based stream combination

For a set of multi-stream feature vectors x1:S , we hypothesize
that the variance of each stream λs = Var{p(cn|xs)} derived
in previous section may be a good indicator of the reliability
of that stream at estimating the posterior probability of class
cn. In order to obtain a class independent confidence measure,
we compute the average variance λ̄s =

∑
n Var{p(cn|xs)}/J .

Then, given the average variance λ̄s, an uncertainty score of the
stream s can be defined as:

rs =
λ̄γs∑S
s′=1 λ̄

γ
s′

(12)

where γ ∈ [0,∞) is an arbitrary exponential factor that allows
different ways of computing stream uncertainty scores. These
uncertainty scores rs can be used to derive stream exponential
weights for Eq. 11 that incorporate variance posterior informa-
tion, for insnance:

ws = S
S−1

(1− rs) (13)

where the S
S−1

constant term assures that
∑S
s=1 ws = S.

Given that the simple equal weight solution usually provides
excellent stream fusion results [8], it is convenient to define
ws as a distortion that depends on the uncertainty score around
ws = 1. Thus, for the particular case of S = 2, it is possible to
re-write ws to introduce a β ∈ [0, 1] term to balance the influ-
ence of rs with respect to the equal weight solution as follows
(for S > 2 a different normalization is needed):

wβs={1,2} = S
S−1

(0.5 + β(0.5− rs)) (14)

Notice that for shake of clarity the time frame index was omitted
in the derivations of this section. However, the stream uncer-
tainty score of Eq. 12 is in fact time dependent, since it is com-
puted for every time frame, and consequently ws are time vary-
ing weights. Thus, it is possible to compute the time smoothed
uncertainty score r′s(t) at time instant t as

r′s(t) = (1− α)r′s(t− 1) + αrs(t) (15)

where α is a smoothing factor, r′s(t − 1) is the previous
frame smoothed uncertainty score, and rs(t) is the instanta-
neous estimation of Eq. 12. It can be easily demonstrated that∑S
s=1 r

′
s(t) = 1, then previous expressions for the computa-

tion of stream weights stand.

4. Experiments and Results
4.1. Experimental set-up

In order to test the proposed techniques in a realistic scenario
the AURORA4 framework [9], an artificially corrupted version
of the the Wall Street Journal database, was used. The training
data corresponds to the SI-84 corpora and the test set is based
on the November 1992 ARPA WSJ evaluation set, contaminated
with six different types of noise. The test set was divided into
three groups, clean, stationary noise (car), for which speech en-
hancement is usually more effective, and non-stationary noises.
The systems are evaluated with the WSJ standard 5K non-
verbalized closed bi-gram language model. The recognition
setup implements a version of our own in-house hybrid ASR
system AUDIMUS [10] with multiple state sub-phoneme recog-
nition units and a restricted set of phone transition units [11].
Two feature streams, corresponding to amplitude based MFCC
features and RASTA-LPCC features were considered. These
were complemented with delta and acceleration coefficients as
well as cepstral mean subtraction. The posterior in STFT do-
main was computed with a Wiener filter with an IMCRA noise
variance estimator [12] as described in [2]. The posterior prop-
agation was computed using STFT-UP as described [1, Ch. 6].
The only change with respect to the usual methods was using
the log-normal assumption for the amplitude MFCCs, rather
than the Unscented transform, since it is numerically more sta-
ble. Diagonal covariance was used for the MMSE-MFCC es-
timator and full covariance for the MMSE-RASTA-LPCC esti-
mator, since it affects the accuracy of the method.

4.2. Results

Four speech enhancement cases have been considered: no
enhancement (baseline), conventional Wiener filter2, Wiener
propagated posterior mean (MMSE-feature estimate) and
MMSE-feature estimate with MLP-UD. In Table. 1 word er-
ror rate (WER) results are provided for each individual stream
(top), conventional equal weight stream fusion (middle) and un-
certainty based stream fusion (bottom).

Single stream results show complementary performances
for MFCC and RASTA-LPCC features. MFCCs show a partic-
ularly better performance for stationary noise whilst RASTA-
LPCC outperform MFCCs in clean speech and non stationary
noises. The use of a simple speech enhancement pre-processing
provides a reduction of WER, with the Wiener filter outperform-
ing MMSE estimators in feature domain in some cases. The ad-
ditional use of MLP-UD however, improves the use of MMSE
estimators in feature domain in all scenarios also outperforming
all other techniques for noisy speech.

Regarding conventional stream fusion, results do notably
improve for all conditions. Wiener and the MMSE estimator in
feature domain show similar performance although the MMSE
point estimator yields a very good suppression of stationary
noise. This is coherent with the fact that the propagated vari-

2Wiener filter was chosen instead of other well known methods like
the Ephraim-Malah filters since it gave better results in the initial exper-
iments.
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Table 1: Top-down: Word error rates for MFCC and RASTA
individual streams, conventional and uncertainty driven fusion.

Clean Stat. Non-St.
Single Stream

MFCC Baseline 11.1 23.8 50.5
Wiener 10.2 21.7 49.4
MMSE-MFCC 12.0 21.5 48.5
MMSE-MFCC+MLP-UD 10.8 19.8 46.4
RASTA-LPCC Baseline 10.8 28.0 48.4
Wiener 12.4 22.2 45.6
MMSE-RASTA 11.2 22.1 45.8
MMSE-RASTA+MLP-UD 11.0 21.0 43.1

Two Streams
MFCC+RASTA Baseline 9.2 19.4 41.7
Wiener 8.8 17.1 38.6
MMSE-MFCC+RASTA 8.9 15.5 39.0
+MLP-UD 8.6 15.4 37.8
Uncertain Stream Fusion (MFCC+RASTA+MLP-UD)
γ = 1, β = 1, α = 1 8.3 15.9 38.5
γ = 0.5, β = 1, α = 1 8.2 15.3 38.0
γ = 0.1, β = 1, α = 1 8.4 15.2 37.8
γ = 0.05, β = 1, α = 1 8.5 15.2 37.7
γ = 1, β = 0.75, α = 1 8.2 15.5 38.2
γ = 1, β = 0.5, α = 1 8.3 15.3 38.0
γ = 1, β = 0.25, α = 1 8.3 15.1 37.9
γ = 1, β = 1, α = 0.75 8.1 15.7 38.6
γ = 1, β = 1, α = 0.5 8.3 15.7 38.6
γ = 1, β = 1, α = 0.25 8.2 15.8 38.6

ance of the Wiener filter only takes into account the residual
mean square error and not the errors in the estimation of noise
variances [2]. Such errors appear often in the case of non sta-
tionary noise, when the IMCRA speech probability estimator
fails, and thus decrease the efficiency of the approach. As in
the single channel case, the best results for all conditions and
equal weight stream fusion are achieved when using MLP-UD
together with the MMSE point estimates. Although consistent,
these improvements are small compared to the ones attained
with oracle uncertainties [7]. This shows that there is room for
improvement if uncertainties are better estimated.

Regarding uncertainty driven stream fusion, results for the
default scheme (γ = β = α = 1), together with some represen-
tative results varying these parameters are provided. Comparing
to the equal weight combination, the most relevant fact is that
improvements are always obtained in the clean condition case
independently of the fusion parameters. Moreover, modest im-
provements are achieved with some configurations in stationary
noise conditions, while no improvements or even worse perfor-
mance is generally attained in non-stationary noise conditions.
In the latter case, the inaccuracies produced in the estimation
of the variance commented previously, affects negatively to the
computation of the stream weights. Thus, it might result sur-
prising that propagating the variance of a speech enhancement
system improves the results mainly when no noise is present. It
must be however taken into account that speech enhancement
does not work perfectly and thus modifies the clean speech sig-
nal, which generates an uncertainty that is accounted for by the
variance. Anyway, it must be also considered that there is not
reason to believe that the method proposed here for uncertainty
based multi-stream fusion is the best possible approach. Alter-

native methods to the geometric mean combination rule to in-
corporate uncertainty (see for instance [13]), other formulas for
computing the uncertainty scores and different stream weights
derivations may likely result in enhanced combination schemes.

5. Conclusions
It has been shown how MLP uncertainty decoding yields con-
sistent improvements over using MMSE feature enhancement
when the uncertainties are non-ideally estimated. Inclusion of
an additional MMSE-RASTA-LPCC stream notably increases
performance. An approximate solution to derive the variance
associated to MLP-UD has also been proposed. Initial exper-
iments using this variance for multi-stream fusion shows per-
formance improvements although the technique must be further
explored.
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