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Abstract
We present design strategies for a keyword spotting (KWS) sys-
tem that operates in highly degraded channel conditions with
very low signal-to-noise ratio levels. We employ a system
combination approach by combining the outputs of multiple
large vocabulary automatic speech recognition (LVCSR) sys-
tems, each of which employs a different system design approach
targeting three different levels of information: front-end signal
processing features (standard cepstra-based, noise-robust mod-
ulation and multi layer perceptron features), statistical acous-
tic models (gaussian mixtures models (GMM) and subspace
GMMs) and keyword search strategies (word-based and phone-
based). We also use keyword-aware capabilities in the sys-
tem at two levels: in the LVCSR language models by assign-
ing higher weights to n-grams with keywords in them and in
LVCSR search by using a relaxed pruning threshold for key-
words. The LVCSR system outputs are represented as lattice-
based unigram indices whose scores are fused by a logistic-
regression based classifier to produce the final system combi-
nation output. We present the performance of our system in the
phase II evaluations of DARPA’s Robust Automatic Transcrip-
tion of Speech (RATS) program for both Levantine Arabic and
Farsi conversational speech corpora.
Index Terms: noise-robust keyword detection, automatic
speech recognition, system combination, noise robustness

1. Introduction
Modern KWS systems typically employ sequence modeling ap-
proaches that use hidden Markov models (HMM) to model key-
words and all other words (the garbage model). HMM based
approaches can be grouped into four categories: whole-word
or acoustic KWS that model entire keywords and other words
(garbage words) as HMMs[1]; phonetic KWS use HMMs to
model phone-level (or triphone-level) representations of key-
words and ergodic HMMs for garbage words[2], ASR-based
KWS use standard HMM-based ASR to produce word-level lat-
tices that are represented as indices for keywords search[3]; and
hybrid KWS that combine phonetic and ASR-based KWS ap-
proaches to produce sub-word lattices for generating keyword
search indices. A detailed survey of existing KWS techniques
can be found in [4, 5].

In this work we focus on KWS in conversational speech
that is distorted by the transmission channel with the result-
ing signal-to-noise ratios (SNR) ranging from 20 db to as low
as 0 db collected under DARPA’s RATS program. To achieve
low false alarm rates at such SNR levels, we employ a system
combination approach based on combining a diverse set of out-
puts of multiple ASR systems. Fig. 1 shows the architecture of
our KWS system. Each large vocabulary ASR system applies a
different system design strategy, targeting three different levels

of information: signal processing features, where we use stan-
dard cepstra-based features such as mel frequency cepstra co-
efficients (MFCC) and perceptual linear prediction (PLP), and
noise-robust features based on normalized modulation of cep-
stra and Gabor/Tandem posteriors; statistical acoustic model-
ing, where we use standard Gaussian mixture models (GMMs)
and subspace GMMs; and KWS search space representations,
where we use both word lattices and phone lattices produced
by LVCSR systems. Each ASR system also uses keyword-
aware capabilities to improve KWS performance by first as-
signing higher weight to n-grams containing keywords in the
ASR decoding language models (LM) and second by using re-
laxed pruning thresholds for keywords during ASR search. The
ASR systems produce word-lattices that are in turn converted
to phone confusion networks (PCN). Keyword search is carried
out for each system on word-lattices and PCNs and the final
KWS output is obtained by applying a logistic-regression based
fusion to a subset of these system’s outputs. In this study, we
present analysis of the KWS performance of the above men-
tioned system design alternatives that led to our final system
configuration.

2. Corpora and Task
The speech corpora used in this study was originally collected
under DARPA’s RATS program by the Linguistic Data Con-
sortium (LDC), which was focused on speech in noisy or
heavily distorted channels in two languages: Levantine Ara-
bic and Farsi. The type of noisy channels targeted by the
RATS program is similar to the distortion characteristics of air
traffic controller radio communication channels such as side-
band mistuning, tonal interference and multi path interference.
Pre-existing conversational speech corpora in these two lan-
guages were retransmitted through eight such channels [6]. For
Levantine Arabic acoustic model (AM) training we use ap-
proximately 250 hours of retransmitted conversational speech
(LDC2011E111 and LDC2011E93) and for LM training we
use various sources: 1.3M words from LDC’s EARS data col-
lection (LDC2006S29, LDC2006T07); 437K words from Lev-
antine Fisher (LDC2011E111 and LDC2011E93); 53K words
from RATS data collection(LDC2011E111); 342K words from
GALE Levantine broadcast shows (LDC2012E79) and 942K
words from web data in dialectal Arabic (LDC2010E17). We
set aside a LM tuning set selected from the Fisher data collec-
tion of about 46K words. To evaluate ASR and KWS perfor-
mance for Levantine Arabic, we use two different test sets, each
consisting of 10 hours of held-out conversational speech. These
test sets are referred to as alv dev-1 and alv dev-2 in the rest of
this paper. For Farsi AM training, we use approximately 339
hours of retransmitted conversational speech from three cor-
pora (LDC2001E111, LDC2012E132 and LDC2013E03) and
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for LM training we use 147K words and for LM tuning we use
5K words selected from these three corpora. To evaluate ASR
and KWS performance for Farsi, we use a set of 10 hours of
held-out conversational speech referred to as fas dev in the rest
of this paper. A set of 200 keywords are pre-specified for each
language and test set, where each keyword is composed of up
to three words and at least three syllables long and appearing at
least three times on average in the test set.
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Figure 1: KWS system architecture

3. Automatic Speech Recognition
3.1. Speech Activity Detection

We developed a speech activity detector (SAD) to segment
the speech signal and perform ASR on the detected speech.
SAD was composed of two HMMs, one for speech one for
non-speech, each configured as three state tied HMMs us-
ing 1024 dimension GMM. The GMM feature was a 51 di-
mensional composition of four features: PLP plus deltas and
double deltas, a Gabor spectro-temporal feature followed by
MLP postprocessing[7], a voicing and spectral flux composition
feature[8] and a voicing feature from subband correlogram pro-
cessing. A Viterbi pass was performed to estimate the speech
segments.

3.2. Noise Robust Features

Apart from using standard ASR front-end feature representa-
tions: MFCC and PLP, we also explored ways to compensate
for the severe channel-degradation in the speech signals used in
this study. We developed three different noise-robust signal pro-
cessing features: normalized modulation cepstral coefficients
(NMCC), medium duration modulation cepstral (MDMC) and
Gabor/Tandem posteriors. NMCC[9] is obtained from tracking
in time domain the amplitude modulations of subband speech
signals by using a Hamming window of 25.6 ms with a frame
rate of 10 ms to generate 13 cepstral coefficients and uses up
to triple delta coefficients to yield a 52-dimensional feature
vector. MDMC is similar to the NMCC feature but has sev-
eral advanced signal processing steps and uses a medium dura-
tion analysis window of 51.2 ms. The Gabor/Tandem posteri-
ors [7] feature uses a mel-spectrogram convolved with spectro-
temporal Gabor filters at different frequency channels. This

feature uses a MLP to predict the monophone class posteriors
of each frame given the Gabor values as of the present frame
and the surrounding frames, which are appended standard 39-
dimensional MFCC features.

3.3. Acoustic Modeling

We pool training data from all the eight noisy channels to train
multi-channel acoustic models of two types, both of which use
three-state left-to-right HMMs to model crossword triphones.
The two types of models differ in the way they model the
HMM state output probability, one uses standard GMMs and
the other one uses subspace GMMs. The training corpus is
clustered into pseudo speaker clusters using unsupervised ag-
glomerative clustering. The front-end feature vector is nor-
malized using standard cepstral mean and variance normal-
ization and vocal tract length normalization (VTLN) over the
pseudo speaker clusters, and the features are also transformed
using heteroscedastic linear discriminant analysis (HLDA). For
both GMM and SGMM AMs we train speaker-adaptive maxi-
mum likelihood (ML) models. The GMM models are speaker-
adapted using maximum likelihood linear regression (MLLR)
and the SGMM models are adapted using feature-space MLLR
and speaker subspace adaptation. We perform cross-adaptation
of systems by exchanging the MLLR reference hypothesis be-
tween SGMM and GMM systems each of which use a differ-
ent front-end feature. For the GMM system we use SRI Inter-
national’s DECIPHERTMASR engine[10] and the the KALDI
speech recognition toolkit[11] for training SGMM systems.

3.4. Language modeling

The LM vocabulary was selected using the approach described
in [12]. Using our held-out tuning set for each language, this ap-
proach selected a vocabulary of 47K words for Levantine Ara-
bic and 42K for Farsi, which resulted in an out of vocabulary
(OOV) rate of 4.3% on alv dev-1 and 3.8% on fas dev. We
added to this vocabulary the pre-specified keyword terms so that
there were no OOV keywords during ASR search. Multi-term
keywords were added as multi-words (treated as single words
during recognition). The final LM was an interpolation of in-
dividual LMs trained on each of the corpora for each language
as noted in Sec. 2. The interpolation weights were optimized
to minimize perplexity on the LM tuning set. The individual
LMs were retrained to boost the probability of keywords by re-
peating twice the sentences in the LM training corpora that con-
tained any keywords and also by repeating the keyword terms
twice. The same interpolation weights that were computed be-
fore boosting were used to interpolate the boosted language
models, in order to avoid any additional bias towards a subset
with more sentences containing keywords.

3.5. ASR Performance

We trained a separate ASR system for each combination of front
end feature type and acoustic model type1. Table 1 shows the
word error rates (WER) for the Levantine and Farsi ASR sys-
tems. Each system was cross adapted using adaptation hypothe-
ses from other systems that use different modeling criterion and
front-end features as described in Sec. 3.3.

1The Decipher GMM and KALDI SGMM systems are not directly
comparable and the KALDI SGMM was better than KALDI GMM
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Front End alv dev-1 fas dev
GMM SGMM GMM SGMM

MFCC 73.5 73.8 74.6 75.1
PLP 73.5 73.5 75.1 75.8
NMCC 75.5 n/a 75.0 75.1
MDMC n/a 73.5 - -
Gabor/Tandem 76.1 n/a 77.3 78.5

Table 1: WER (%) Decipher GMM & KALDI SGMM for Lev-
antine & Farsi

4. Keyword Search
4.1. Keyword Aware Pruning

We developed a keyword-aware pruning scheme similar to [13]
in our GMM ASR systems, in order to retain within ASR lat-
tices rare or unintelligible keywords (in the presence of noise),
which may be ”lost” during ASR search pruning due to low LM
and AM scores. For each frame, we sorted the partial hypothe-
ses by their log likelihood and applied a different pruning beam
depending on whether a hypothesis ended at a keyword state
to decide if a hypothesis should be removed. We decided on
a pruning beam for keywords that is twice as large as that for
non-keywords, which provided a good trade-off between speed
of ASR search and KWS performance. For the SGMM systems,
we found that the standard approach to generate determinized
state-level lattices did not have rich alternative hypotheses to
ensure the span of decision error tradeoff (DET) curves to in-
clude low p(miss)2 regions in KWS detection. We added a
special pruning step, before determinization, that applied an ag-
gressive pruning beam to non-keywords, but ensured survival of
at least one path in the lattice for each existing keyword (includ-
ing multiwords), which significantly improved the coverage of
keywords in the lattices.

4.2. Keyword Search Index

ASR-based KWS search is performed in lattice structures since
they contain rich alternative hypotheses. We use word lattices
and phone confusion networks (PCNs) to generate a keyword
search index. ASR word lattices of each system is used to cre-
ate a candidate term index by listing all words in the lattice
along with their start/end time and posterior scores. We used
a time tolerance of 0.5 seconds to merge multiple occurrences
of a word with different times. The KWS output of each system
is obtained by taking the subset of words in the index that are
keywords. Since n-gram keywords were added to the LM these
are treated as single words in the lattices and therefore appear
in the index. We added links in the word lattices where two or
three consecutive nodes form a keyword. This allowed recovery
of multiword keywords for which ASR search hypothesized the
sequence of words forming the keyword instead of the keyword
itself. We also converted the word lattices of each system to
phone lattices and then into PCNs using SRILM. A less con-
strained search is carried out allowing phone deletions using a
PCN-based KWS search[14].

4.3. System Combination & Selection

We used a logistic regression-based classifier for combining
the KWS search indices of multiple systems as we reported in
[15]. Given N systems, we created a vector of length 2N for
a keyword hit, where the first N dimensions corresponded to
each system’s score converted from [0, 1] to [−∞,+∞] via the

2p(miss) = probability of miss; p(fa) = probability of false alarm

W1#
W2#

W3#

W4#

W5#

W6#

W7#

W8#

Figure 2: Farsi word-based systems.

logit function and the second N dimensions were binary indi-
cator variables to indicate if each separate system has a missing
score. This vector x is used to train a binary classifier using lo-
gistic regression using positive and negative examples (i.e. cor-
rect hits and false alarms of keywords) on development data,
which learns the fusion weights w and a bias b and produces
the final system score s = wTx + b. We also experimented
with adding N(N +1)/2 indicator variables to x for indicating
all possible pairs of N systems missing scores at the same time
instant. Since our phonetic KWS search produces up to an or-
der of magnitude more keyword hits than the word systems, we
experimented with training a separate fusion model when the
hits only came from phone KWS search. For selecting the best
systems, we considered 2N systems equally split between word
and phone systems for a given language. Then using a two step
greedy search, we first selected W word systems leaving one
out a time till we stop seeing KWS performance gains, then to
these we add the best P phone systems.

5. Results & Discussion
In this part, we present our results in terms of the p(miss) and
p(fa) KWS metrics used under the RATS program. Evaluation
was performed on the alv dev2 set for Levantine and on the fas
dev set for Farsi with 200 keywords. The fusion was trained on
separate audio with 1000 extra keywords that we selected for
each language.

First, we found that our various keyword-aware strategies
brought significant gains. Preliminary experiments on a GMM-
PLP system showed that the two keyword search techniques de-
scribed in Sec 4.2, either adding multiwords to the LM and cre-
ating a 1-gram index, or using a single-word LM but adding
multiword links in the lattice, provide similar performance and
a lowest operating point of 43% p(miss) at 1% p(fa). Com-
bining the two approaches, by adding multiword links on top
of lattices created with a multiword LM brought an extra 3.5%
gain in p(miss) at 1% p(fa). Also, we found that keyword
boosting in the LM brought gains of 1 to 2% in p(miss) at 1%
p(fa). While keyword-aware pruning in ASR search brought
no gains in p(miss) at a given p(fa), it allowed us to extend
the range of operating points of our system by an additional 1%
in p(miss). This is because using a larger pruning beam for
keywords allows more keywords with very low scores to be hy-
pothesized, therefore lowering the lowest achievable miss rate.

Second, we found our word-based systems and PCN-based
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(a) Eight word-based systems
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(b) Eight PCN-based systems

Figure 3: Levantine Arabic individual systems performance on the alv dev2 set

(a) System combination performance (b) System combination performance

Figure 4: Levantine and Farsi system combination performance on the alv dev2 and fas dev sets

systems to have different characteristics. The word-based sys-
tems generally exhibit a lower p(fa) at a given p(miss), they
are limited to a lowest p(miss) of 30% to 35% for Levan-
tine and of 15% to 25% for Farsi (see DET curve on Figures
2 and 3a). The more flexible KWS search performed on PCNs
can achieve much lower p(miss) rates at the cost of increased
false-alarm rates (Figure 3b). For both languages and index-
ing approaches (word-based and PCN-based), we observed that
the best performing systems were GMM-based, and used Ga-
bor/Tandem posteriors, MFCC or PLP front-end features.

Third, we found system selection and fusion to bring very
large gains compared to using individual systems. After ap-
plying the system selection procedure of Sec. 4.3, the best 6
systems for combination were found to be W2346+P233 for
Levantine, and W2478+P34 for Farsi. For Levantine, the ad-
dition of the two PCN-based systems to the 4 selected word
systems brought gains up to 2% in p(miss) for a fixed p(fa)
and extends the span of the DET curve to a lowest achievable
p(miss) of less than 5%. Fig. 4a shows that the novel pairs and
the separate modeling approaches brought gains of the order of

3The system ids start with W for word-based systems and P for
phone-based systems

2% in p(miss) at p(fa) below 1% over the baseline approach
and their combination lowered p(miss) by up to 1% in some
parts of the DET curve. For Farsi, Figure 4b shows that the
separate approach shows about 1% gain in p(miss), while the
pairs modeling does not show gains. Improvements from sys-
tem combination can be observed by comparing the best Levan-
tine word and phone systems in Fig. 3a & 3b (W3 and P3) and
the 6-system fusion in Fig. 4a. At 35% p(miss) the fused sys-
tem achieves 0.15% p(fa) while W3 and P3 achieve 0.5% and
1% p(fa) respectively. At a p(miss) of 20% the best phone
system (P2) achieves 3.5% p(fa) while the combined system
achieves 1% p(fa).

Our future work will focus on improved noise-robust fea-
tures, novel subword units for ASR and improvements to pho-
netic KWS to reduce p(fa).
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