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Abstract
In this paper, we consider the single-channel speech enhance-
ment problem, in which a clean speech signal needs to be es-
timated from a noisy observation. To capture the character-
istics of both the noise and speech signals, we combine the
well-known Short-Time-Spectrum-Amplitude (STSA) estima-
tor with a machine learning based technique called Multi-frame
Sparse Dictionary Learning (MSDL). The former utilizes statis-
tical information for denoising, while the latter helps better p-
reserve speech, especially its temporal structure. The proposed
algorithm, named STSA-MSDL, outperforms standard statis-
tical algorithms such as the Wiener filter, STSA estimator, as
well as dictionary based algorithms when applied to the TIM-
IT database, using four different objective metrics that measure
speech intelligibility, speech distortion, background noise re-
duction, and the overall quality.
Index Terms: Speech Enhancement, Dictionary Learning,
STSA, ADMM, contextual effects

1. Introduction
Traditionally, the single-channel speech enhancement problem
has been tackled by leveraging the statistical properties of both
speech and noise signals in the short-time-Fourier-transform
(STFT) domain (see [1] for an overview). For example, the
STSA estimator in [2] estimates the spectrum magnitude by
assuming a Gaussian prior distribution in the STFT domain.
Under non-Gaussian prior assumption, [3] proposes a spectrum
amplitude estimator using a maximum a posteriori framework.
These statistical methods purely view speech and noise as two
statistical sources without taking speech-specific information
such as formant behavior or temporal properties into accoun-
t. Also, their performance primarily depends on the accuracy
of the signal-to-noise (SNR) estimation. However, in moderate
or high noise environments, accurate SNR estimation is very
challenging. Therefore, statistical methods alone typically do
not increase speech intelligibility. One potential improvement
on these methods is to incorporate the ability to learn speech-
specific information.

Dictionary Learning (DL) is a machine learning approach
that attempts to learn and model speech-specific information. In
this approach, speech data (e.g., a spectrum magnitude) can be
modeled as a linear combination of dictionary atoms, which are
learned beforehand during a training phase. DL related algo-
rithms have been successfully applied in audio processing for
monaural sound separation [4, 5] and in speech enhancement
[6, 7]. Sparse DL is a popular variation of DL, which further
requires that the modeled data be represented by only a small
number of dictionary atoms [8, 9, 10]. Compared with its non-
sparse counterpart, the sparse DL approach is shown to be sig-

nificantly more effective in applications such as image enhance-
ment [11] and speech enhancement [12].

The classical statistical and Sparse DL-based approaches
were recently combined in [13] in the so-called Sparsity-based
Wiener plus Dictionary Learning (SWDL) algorithm, which
outperformed the Log STSA estimator [14] in terms of both
objective and subjective evaluations. SWDL demonstrated that
statistical methods can benefit through explicit incorporation of
speech-modeling, by constraining the statistical estimation as a
function of a dictionary-based speech model.

This paper extends the SWDL approach by modeling the
temporal structure of speech, the preservation of which is im-
portant for both quality and intelligibility. Since, in continu-
ous speech, context significantly influences the distribution of
spectro-temporal energy (and thus the spectrum to be modeled),
modeling a spectrum by accounting for its context is expected
to result in better speech modeling and thus better enhancemen-
t. Context modeling can also capture certain unique forman-
t transitions (e.g. influence of the phoneme /r/ on its neigh-
bors) or pitch variations. Existing DL approaches [6, 7, 12, 13]
model speech-specific information only from a single spectrum
frame, which typically captures only 20-30 msec of speech.
We therefore propose a novel algorithm named STSA-MSDL,
an extension of SWDL [13] that explicitly captures temporal
structure by combining the STSA estimator with multi-frame s-
parse DL. In multi-frame sparse DL, we concatenate multiple
speech spectra into a speech “patch”, and model this contex-
tual speech patch using DL. Since learning information from
multiple frames requires operating in a significantly increased
problem dimension, we also propose a dimensionality reduc-
tion method to render the learning problem manageable.

2. Method
Notation: An upper case letter denotes a matrix, and a lower
case letter denotes either a vector or a scalar depending on the
context. Bold face represents complex-valued quantities. xn

represents the nth column of the matrixX , and xk,n represents
the corresponding (k, n) entry of X. x̄n = [xn−2;xn;xn+2]
denotes the concatenation of three columns of X centered at
column n. For complex-valued X, X and θ denote its mag-
nitude and phase respectively. ‖X‖1 =

∑
k,n |Xk,n| denotes

the sum of the absolute values of all entries.
⊙
and ≥ de-

note entry-wise multiplication and entry-wise “greater or equal
to” respectively. I0(·) and I1(·) represent the modified Bessel
function of zero and first order. blkdiag(X,Y, Y ) denotes the
block diagonal matrix with X,Y, Z being the diagonal block-
s. 〈·, ·〉 represent the standard inner product in the Euclidean
space.
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2.1. System Model
Consider the single-channel speech enhancement problem,
which aims to recover the clean speech xc(t) from a noisy ob-
servation y(t):

y(t) = xc(t) + u(t)

where u(t) denotes additive noise and t denotes time. Applying
STFT, the equivalent time-frequency model is yk,n = xc

k,n +
uk,n, where yk,n, xc

k,n, and uk,n denote, respectively, the
complex-valued spectrum of y(t), xc(t) and u(t), at frequen-
cy bin k ∈ {1, 2, · · · ,K} and time frame n ∈ {1, 2, · · · , N}.
xc
k,n and uk,n are assumed to be independent zero-mean ran-
dom variables with variance ς2k,n and σ2

k,n, respectively. In this
paper, σk,n is assumed to be known and ςk,n is estimated from
the noisy spectrum using Eq. (10).

2.2. Proposed Formulation
Let X̂ denote the complex-valued enhanced spectrum, with
magnitude X̂ . The popular STSA enhancement method [2] es-
timates X̂ by minimizing the square error:

x̂k,n = argmin
x

1

2
E
[
|x− xc

k,n|2|yk,n, σk,n, ςk,n
]

= argmin
x

1

2
|x− zk,n|2 (1)

where
zk,n = yk,n

√
π

2

vk,n
γk,n

e−
vk,n

2

[
(1 + vk,n)I0

(vk,n
2

)
+ vk,nI1

(vk,n
2

)]
(2)

and vk,n � ξk,n

1+ξk,n
γk,n. Here, ξk,n � ς2k,n

σ2
k,n

denotes the a

priori SNR and γk,n � Y 2
k,n

σ2
k,n

denotes the a posteriori SNR.
Similar to the STSA, this work will also focus on only es-

timating the spectrum magnitude of the enhanced speech. The
phase of the enhanced spectrum will be assumed to be the same
as that of the noisy spectrum. Therefore, in the remainder of this
paper, the term “spectrum” will refer to the spectrum magnitude
alone, unless otherwise specified.

Since x is unconstrained in (1), the optimal value of the es-
timated spectrum magnitude is zk,n, the minimum mean square
estimate given the noisy observation yk,n. Our proposed for-
mulation STSA-MSDL is a constrained version of the STSA,
where the constraints exploit the temporal structure of speech.

To preserve temporal dynamics, we propose using multi-
frame sparse dictionary learning. Specifically, we learn a dictio-
nary that can simultaneously represent three consecutive frames
xn−2, xn, and xn+2, thereby capturing the temporal relation-
ship between them. In this setting, each spectrum patch x̄n �
[xn−2;xn;xn+2] covers a long contextual window, instead of a
traditional frame. We collect patches {x̄n}3K×1 from the train-
ing sentences, and learn a dictionary D ∈ R3K×M with M
dictionary atoms each of dimension 3K that can sparsely rep-
resent all the training patches: as Eq. (3):

x̄n ≈ Dgn, and gn is a sparse vector (3)

Typically,M 	 3K to allow overcompleteness. Eq. (3) means
that any speech-like temporal dynamic pattern can be recon-
structed by using a sparse linear combination of atoms of D, s-
ince the pattern has been modeled by D. Conversely, any patch
not exhibiting the temporal dynamics of typical speech will not
be sparsely represented by D. Thus, the sparsity of the repre-
sentation is the key to capturing speech temporal dynamics, and
furthermore to separate speech-like signals from non-speech.

Due to the concatenation of frames into a patch, the dictio-
nary dimensionality is large (3K × M), making the training
process difficult due to the curse of dimensionality [15]. It is
therefore desirable to learn the sparse dictionary in a reduced
dimension, that still contains most of the information in the o-
riginal signal x̄n. One possible way to do this is by linear com-
pressing the training data to a lower dimensionality 3d (
 3K):

x̄n ≈ RWx̄n (4)
Wx̄n = Dgn, and gn is a sparse vector

whereW ∈ R3d×3K and R ∈ R3K×3d is a pair of linear com-
pression and decompression matrices. This reduces the dictio-
nary dimension from (3K ×M) to (3d×M), thus facilitating
fast training. In section 2.3, we will present an efficient way to
learn {W,R} that preserves most of the perceptually relevant
spectral and temporal information of the original signal x̄n. It
should be noted that larger patch sizes (context window) are al-
so possible; the choice of 3 frames (corresponding to 90 msec)
was motivated by a compromise between capturing adequate
context and limiting training complexity.

To combine the above sparse dictionary with the statistical
criterion, we constrain that the reconstructed signal xn is close
to the STSA estimator while at the same time being sparsely
representable by the multi-frame sparse dictionary. Specifical-
ly, we estimate the enhanced speech spectrum by solving the
following optimization problem:

[X̂, Ĝ] = argmin
X,G

N∑

n=1

1

2
‖xn − zn‖2 + λs‖xn‖1 + λg‖gn‖1

s.t. x̄n = RDgn, xn ≥ 0 ∀n = 1, · · ·N (5)

In (5), we require that the enhanced spectrum X̂ has small sta-
tistical mean square error

∑N
n=1

1
2
‖x̂n − zn‖2. We further re-

quire the enhanced spectrum patch ˆ̄xn to be sparsely represent-
ed by the dictionary, by: i) constraining the enhanced speech
to satisfy ˆ̄xn = RDĝn, and ii) penalizing the sparsity-inducing
L1 norm of the coefficient vector ĝn. We also penalize the L1

norm of the enhanced speech x̂n itself, since the clean spectrum
typically has sparse columns.

To efficiently solve Eq. (5), we present an inexact variant of
the popular Alternating Direction Method of Multiplier (ADM-
M [16]) in Algorithm 1, which admits closed form updates and
is guaranteed to converge. LetL(X,G,U) denote the augment-
ed Lagrangian function, where U is the dual variable and ρ > 0
denotes the constraint violation parameter:

L(X,G, U) =
∑

n

1

2
‖xn − zn‖2 + λs‖xn‖1 + λg‖gn‖1

+〈un, RDgn − x̄n〉+ ρ

2
‖RDgn − x̄n‖2

The three steps of classical ADMM are primal updates in Eq.
(6) and dual update in Eq. (8).

Gr+1 = argmin
G

L(Xr, G, Ur) (6)

Xr+1 = arg min
X≥0

L(X,Gr+1, Ur) (7)

U t+1 = U t + ρ
(
RDGr+1 − X̄r+1

)
(8)

Because of the structure of L(X,G, U), the update for X ad-
mits a closed form, but not the update for G. Therefore, we in-
stead solve the G update inexactly by minimizing another local
upper-bound function as shown in Eq. (9), which now admits a
closed form update. The inexact ADMM is significantly faster
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Algorithm 1 Inexact ADMM for solving Eq. (5)
Require: : STSA estimate Z, decompression matrix R, dictio-

naryD, sparsity parameter λs and λg

1: for iteration r do
2: G update: solve a local upper bound minimization

gr+1
n = argmin

gn
ρ〈−(RD)T

(
x̄r
n −

1

ρ
ur
n

)
, g − grn〉

+ρ
LRD

2
‖gn − grn‖2 + λf‖gn‖1

= Shrink

(
grn −

1

LRD
ern,

λf

ρ
, LRD

)
(9)

where ern = −(RD)T
(
x̄r
n − 1

ρ
ur
n

)
, and LRD is the

largest eigenvalue of (RD)T (RD).

Shrink(x, γ, ρ) =

⎧
⎨
⎩

0, if |x| ≤ γ
ρ

x− γ
ρ
, if x > γ

ρ

x+ γ
ρ
, if x < − γ

ρ

3: X update: Eq. (7)
4: U update: Eq. (8)
5: end for

than the classical ADMM.We have proved that Algorithm 1 (in-
exact ADMM) indeed converges to the global optimal solution
of problem (5). This proof is omitted due to the lack of space.

The overall STSA-MSDL algorithm is summarized in Al-
gorithm 2. A simple Maximum Likelihood Estimator (10) is
used to estimate the speech variance ς2k,n.

Algorithm 2 STSA-MSDL
Require: : noisy speech y(t), multi-frame sparse dictionary

D, decompression matrix R, sparsity parameter λs and λg

1: Y = Y
⊙

exp(jθ) = STFT(y(t))
2: Estimate noise variance σ2

k,n fromY using any noise track-
ing algorithm.

3: Estimate speech variance ς2k,n fromY.

ς2k,n = max
[
|yk,n|2 − σ2

k,n, 0
]

(10)

4: Estimate STSA result zk,n via solving Eq. (2).
5: Estimate enhanced spectrum X̂ by solving Eq. (5) using
Algorithm 1

6: Enhanced STFT: X̂ = X̂
⊙

exp(jθ)

7: return Enhanced speech: x̂(t) = IFFT(X̂)

2.3. Dimensionality Reduction by Linear Compression
A coordinate descent approach is used to learn the linear com-
pression and decompression pair {W,R} that meet the require-
ment in (4). Let X̄ denote the collection of all training patches.
We find the optimal linear compression and decompression ma-
trix pair {W,R} by minimizing the reconstruction error:

[W,R] = argmin
W,R

‖X̄ −RWX̄‖2F (11)

Eq. (11) is solved by alternatively minimizing with respect to
W and R, with initialization W 0 = blkdiag(Wd,Wd,Wd).
Here, Wd ∈ Rd×K denotes the frequency weighting matrix
that maps the K linear spectrum frequency bins to d mel-
frequency bins. This minimization is guaranteed to converge
to a stationary point [17, Proposition 2.7.1].

Informal listening and formal objective evaluations indicat-
ed no perceptually noticeable difference in both the quality and
intelligibility between the original signal (X̄) and reconstruct-
ed signal (RWX̄) after compression and decompression. This
suggests acceptable perceptual loss due to compression, and
justifies learning the dictionary in the compressed domain.

2.4. Sparse Dictionary Learning Algorithm
Given the compression matrixW and the training speech patch-
es {x̄n}, we use Eq. (12) to learn the dictionary that meets the
sparse dictionary learning assumption (3).

[D,G] = argmin
D,G

N∑

n=1

1

2
‖Wx̄n −Dgn‖2 + λd‖gn‖1

s.t. ‖dm‖ ≤ 1,∀m = 1, · · · ,M (12)

We seek a dictionary that well represents the data, by minimiz-
ing the square error between Wx̄n and Dgn. We also encour-
age sparse representation by penalizing the L1 norm of gn. To
avoid scaling ambiguities, we constrain the norm of columns of
D to be at most 1. We customize the Block Successive Upper-
Bound Minimization (BSUM) algorithm [18] to solve Eq. (12).
BSUM supports computationally efficient closed form updates,
and is guaranteed to converge to the set of stationary points[18,
Theorem 2b].

To demonstrate that the learned dictionary D indeed cap-
tures the temporal dynamics of speech, we construct an ex-
periment to compare the performance of a specific dictionary
in representing different speech transitions. We first collec-
t all speech patches that correspond to the phoneme transition
(/iy/ → /r/) into X̄/iy/→/r/. We can define X̄/iy/→/aa/

and X̄/iy/→/ae/ in a similar fashion. These three speech tran-
sitions have different temporal dynamics because the second
phoneme is different. For example, as shown in Figure 1, /r/
typically demonstrates a low third formant (F3), while /aa/ and
/ae/ do not. Furthermore, /r/ is often characterized by lower
energy compared to /aa/ and /ae/. These characteristic prop-
erties of /r/ impact the spectro-temporal energy transition from
/iy/, making the dynamics of /iy/ significantly different from
the other two cases. We now train a dictionary that can sparse-
ly represent the (/iy/ → /r/) transition, by using only data
from X̄/iy/→/r/ to train the dictionary. We finally use this dic-
tionary D/iy/→/r/ to approximate all three speech transitions
that correspond to different temporal dynamics, and calculate
the representation error defined as Eq. (13):

Error (x̄n) = min
gn

‖Wx̄n −D/iy/→/r/gn‖2
‖Wx̄n‖2 (13)

where x̄n denotes the speech patch that corresponds to any
of the three temporal dynamics. A histogram of the approx-
imation errors for the three speech transitions is shown in
Figure 2. Figure 2 shows that using D/iy/→/r/ to approxi-
mate X̄/iy/→/aa/ and X̄/iy/→/ae/ results in a much higher
error than for X̄/iy/→/r/. This supports that the dictionary
D/iy/→/r/ has specifically captured the temporal dynamics of
(/iy/→ /r/), but not that of the other transitions.

3. Performance Evaluation
The quality and intelligibility of the speech processed by STSA-
MSDL was compared with that of unprocessed speech and
speech processed by STSA [2], SWDL [13] and Wiener filter.
3.1. Experiment Setup
The TIMIT database [19] was used for evaluation due to the
availability of a large database for dictionary training. One
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/iy/ /r/

(a) /iy/ → /r/

/aa//iy/

(b) /iy/ → /aa/

Figure 1: Temporal formant patterns in different phoneme transitions.
The first, second, and the third formant are drawn in bold blue, green,
and red respectively.
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%
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(/iy/→/r/)
(/iy/→/aa/)
(/iy/→/ae/)

Figure 2: Histogram of representation error for using D/iy/→/r/ to
represent X̄/iy/→/r/, X̄/iy/→/aa/, and X̄/iy/→/r/

universal dictionary for both genders was trained using six
hours of speech selected randomly form the “train” subset. For
enhancement, 320 male sentences and 160 female sentences
were selected randomly from the “test” subset. Computed-
generated additive Gaussian noise (AWGN) and a real world
noise (Street) were added to each test sentence at three different
SNRs (−5, 0, 5 dB). The active speech level of the clean speech
signal was first determined using the method B of ITU-T P.56
[20], and the noise sample was then appropriately scaled and
added to the clean speech to obtain the desired SNR. All noisy
signals were processed by each of the 4 algorithms (Wiener fil-
ter, STSA, SWDL, STSA-MSDL), and the noise variance was
assumed to be known for all algorithms.

All sentences were sampled at 8 kHz, and segmented in-
to 30-ms duration frames using a Hamming window with 50%
overlap (thus, a contextual window of 90 msec). A 512 point
FFT/IFFTwas used for the time-frequency analysis and synthe-
sis operations (thus,K = 257). This choice of parameters were
motivated by the values proposed in [13]. For the pilot study we
report in this paper, the reduced dimensionality (3d) was set to
120, while the original patch dimension (3K) is 771. The dic-
tionary size (M ) was fixed to 240, and the sparsity parameter
(λd) was set to 0.3. The best sparsity parameters (λs, λg) in
Eq. (5) were found using a grid search on 16 randomly select-
ed sentences from the train subset, and were retained for the
enhancement phase.

Four perceptually oriented objective metrics were used to
measure four different aspects of the enhancement performance.
The intelligibility of the processed speech was measured using
the Intelligibility Index [21] (I3, ranging from 0 to 1). The other
three metrics were Csig , Cbak, and Covl [22] (all ranging from
0 to 5) that measure the speech signal distortion, background
noise reduction, and the overall speech quality respectively. For
all metrics, lower values indicate worse performance and high-
er values indicate better performance along that metric. These

objective metrics were chosen because of their high correlation
with perceptual responses (see [21, 22] for details).

3.2. Objective Evaluation Results and Discussions
Figure 3 compares the performance of various algorithms for
different noise types at different SNRs. The five circles on each
SNR in each figure denote the average metric value of, from
left to right, Unprocessed speech, Wiener filter, STSA, SWDL,
and STSA-MSDL. Under AWGN, both the dictionary-based al-
gorithms (SWDL, STSA-MSDL) outperform the traditional s-
tatistical estimators (Wiener, STSA) in all of the four objective
metrics; this is because both the SWDL and STSA-MSDL ex-
ploit the speech-specific information by leveraging a dictionary.
Furthermore, STSA-MSDL achieves a noticeable improvemen-
t over SWDL in signal distortion, background noise reduction,
and overall quality while not sacrificing the intelligibility. This
superior performance of the STSA-MSDL can be explained by
the exploitation of speech temporal dynamics in a longer con-
textual window using multi-frame sparse DL, as opposed to
SWDL where only a single frame spectrum information is ex-
ploited. Under street noise, the relative improvement of STSA-
MSDL over SWDL, Wiener and STSA is not as large as in
the AWGN case. This may suggest that the performance of
STSA-MSDL depends on the noise variance distribution over
frequency. The performance of the proposed algorithm under
other real-world noises will be evaluated and analyzed in the
future.

−5 dB 0 dB 5 dB
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1
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AWGN
Street Noise

(a) I3
−5 dB 0 dB 5 dB
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AWGN
Street Noise

(b) Csig
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l

Street Noise
AWGN

(d) Covl

Figure 3: Performance at different SNRs under AWGN and Street
noise. The five circles in each SNR denote average metric of, from left
to right, Unprocessed speech, Wiener filter, STSA, SWDL, and STSA-
MSDL. The result is averaged over all 480 test sentences.

4. Conclusions and Future Work
In this paper, we present a novel approach for single-channel
speech enhancement (STSA-MSDL) that combines the STSA
estimator with multi-frame sparse DL. Due to the exploitation
of speech temporal dynamics, STSA-MSDL achieves a superior
performance over traditional statistical algorithms, as evidenced
by objective evaluation in our preliminary study. In the future,
we plan to extend the STSA-MSDL from a batch algorithm to
an online algorithm aiming for real-time processing. To better
capture the temporal dynamics of individual speakers, we also
plan to develop online updates to the dictionary. Another inter-
esting future direction is to use multi-frame sparse dictionary
to also capture the temporal dynamics of highly non-stationary
noise, and thus improve enhancement in difficult non-stationary
scenarios like a cocktail party.
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