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Abstract
In spite of the great success of the i-vector/PLDA framework,
speaker verification in noisy environments remains a challenge.
To compensate for the variability of i-vectors caused by dif-
ferent levels of background noise, this paper proposes a new
framework, namely SNR-invariant PLDA, for robust speaker
verification. By assuming that i-vectors extracted from utter-
ances falling within a narrow SNR range share similar SNR-
specific information, the paper introduces an SNR factor to the
conventional PLDA model. Then, the SNR-related variability
and the speaker-related variability embedded in the i-vectors are
modeled by the SNR factor and the speaker factor, respectively.
Accordingly, an i-vector is represented by a linear combination
of three components: speaker, SNR, and channel. During veri-
fication, the variability due to SNR and channels are marginal-
ized out when computing the marginal likelihood ratio. Ex-
periments based on NIST 2012 SRE show that SNR-invariant
PLDA achieves superior performance when compared with the
conventional PLDA and SNR-dependent mixture of PLDA.
Index Terms: i-vector, PLDA, SNR-invariant, speaker verifica-
tion

1. Introduction
During the last few years, the i-vector [1] has become a pop-
ular feature representation in the speaker verification domain.
Inspired by the joint factor analysis (JFA) framework [2], in
the i-vector framework, both speaker and channel information
was compressed into a low-dimensional subspace called the
total variability subspace. Through this subspace, utterances
of variable-length can be represented by fixed-length i-vectors.
Such a representation greatly simplifies the modeling process
in speaker verification. To suppress the channel- and session-
variability embedded in i-vectors, linear discriminant analysis
(LDA) [3], within-class covariance normalization (WCCN) [4],
and probabilistic LDA (PLDA) [5] can be applied. Typically,
LDA is applied to the i-vectors followed by the WCCN. In the
verification stage, the cosine distance between target-speaker’s
i-vector and the i-vector of a test utterance is used as the simi-
larity measure between the target speaker and the test speaker.
Alternatively, the likelihood-ratio score of a test i-vector can be
computed by marginalizing over the latent variables of a heavy-
tailed PLDA model [6] or a Gaussian PLDA model. The for-
mer assumes that the i-vectors follow a Student’s t distribution
and the latter requires applying length-normalization [7] to the
i-vectors so that the resulting i-vectors are more amenable to
Gaussian PLDA modeling.

This work was in part supported by The RGC of Hong Kong SAR
(Grant No. PolyU 152117/14E). An extended version of this work will
appear in [27].

Several studies have shown that background noise has se-
vere effects on the performance of speaker verification sys-
tems [8–10]. This issue can be addressed in the feature domain
[11–16] and model domain [17–23]. The former attempts to
find features that are more robust than the conventional MFCC,
whereas the latter focuses on the training of back-end classifiers
to make them more resilient to noise.

Although the conventional PLDA models are very good
at suppressing session variability, their ability in modeling i-
vectors derived from utterances having different signal-to-noise
ratio (SNR) is limited. The reason is that when training a
PLDA model, the i-vectors of the same speaker are grouped
together regardless of the noise level of the corresponding ut-
terances. The resulting model attempts to model speaker and
channel subspaces, where the channel subspace also comprises
the variability caused by background noise. To address this is-
sue, several methods have been proposed to improve the robust-
ness of i-vector/PLDA systems. In [20–23], clean and noisy
utterances were pooled together to train a robust PLDA model.
Garcia-Romero et al. [24] employed multi-condition training
to train multiple PLDA models, one for each condition. A ro-
bust system was then constructed by combining all of the PLDA
models according to the posterior probability of each condition.
Mak [25] proposed an adaptive multi-condition training algo-
rithm called SNR-dependent mixture of PLDA to handle test
utterances with a wide range of SNR.

Although the above methods improve the robustness of the
state-of-the-art i-vector/PLDA systems under noisy conditions,
they still have at least one of the following limitations: (1) when
the distributions of SNR in the training set and the test set are
not consistent, the system performance degrades; (2) multiple
PLDA models should be trained, which increases computation
complexity; and (3) the noise level of test utterances need to be
estimated during verification.

To address the limitations of multi-condition training and
to improve the system performance of current i-vector/PLDA
framework, we propose a noise robust speaker verification
framework that can deal with the mismatch caused by the vari-
ability in SNR. Our proposal is inspired by the work in [26]
where the face recognition system is robust to the change in
the facial features of its users when they are getting older,
i.e., insensitive to age variability. Based on a similar line of
thought, we attempt to make speaker verification systems more
resilient to SNR variability by introducing a subspace called
SNR-subspace in the PLDA model. With this new subspace, the
PLDA model not only able to capture the speaker and channel
variabilities embedded in the i-vectors (as in the conventional
i-vector/PLDA systems), but also capable of modeling the vari-
ability caused by different noise levels. We refer to the new ap-
proach as SNR-invariant PLDA and the factors corresponding
to the SNR-subspace as SNR factors. In this model, the identity
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component and the SNR component live in two different sub-
spaces which can be obtained by an expectation-maximization
(EM) algorithm. During the verification stage, SNR variability
and channel variability are marginalized out when the likeli-
hood ratio is computed.

2. PLDA Modeling
Prince and Elder [28,29] proposed a probabilistic LDA (PLDA)
approach to increasing the separability between the facial im-
ages of different persons, and Kenny [6] brought this idea to the
speaker recognition community. In i-vector/PLDA systems, a
preprocessed i-vector xij – which has gone through a series of
transformations (LDA, WCCN, and length normalization) – is
regarded as an observation generated from a PLDA model:

xij = m + Vhi + εij (1)

where m is the global mean of all preprocessed i-vectors, the
columns of V define the bases of the speaker subspace, hi is
a latent identity factor with a standard normal distribution, and
εij denotes the residual term which follows a Gaussian distribu-
tion with zero mean and covariance matrix Σ. Gaussian PLDA
model assumes that xij follows a Gaussian distribution.

3. SNR-Invariant PLDA Modeling
3.1. Generative Models

SNR-invariant PLDA is inspired by the notion of Gaussian
PLDA in which i-vectors from the same speaker should share
an identical latent identity factor. Similarly, we assume that i-
vectors derived from utterances that fall within a narrow SNR
range should share similar SNR-specific information. From a
modeling standpoint, both SNR-specific and identity-specific
information can be captured using latent factors. We refer to
these latent factors as SNR factor and identity factor in the se-
quel.

Under the above assumptions, an i-vector can be regarded
as an observation generated from a linear generative model
that comprises three components: (1) identity component, (2)
SNR component, and (3) channel variability and the remain-
ing variability that cannot be captured by the first two compo-
nents. Assume that we have a set of D-dimensional i-vectors
X = {xk

ij |i = 1, . . . , S; j = 1, . . . , Hi(k); k = 1, . . . ,K}
obtained from S speakers, where xk

ij is the j-th i-vector from
speaker i in the k-th SNR group. In SNR-invariant PLDA, xk

ij

can be expressed as:

xk
ij = m + Vhi + Uwk + εkij (2)

where m is a D × 1 vector representing the global offset, hi

is a P × 1 vector denoting the latent identity factor with prior
distribution N (0, I), wk is a Q × 1 vector denoting the latent
SNR factor with prior distributionN (0, I), εkij is a D×1 vector
denoting the residual with distributionN (0,Σ), V is a D× P
matrix whose columns span the speaker subspace, and U is a
D ×Q matrix whose columns span the SNR subspace. hi and
wk are assumed to be statistically independent.

3.2. EM Algorithm for SNR-Invariant PLDA

Denote θ = {m,V,U,Σ} as the parameters of an SNR-
invariant PLDA model. These parameters can be learned from
a training set using maximum likelihood estimation. Given an
initial value θ, we aim to find a new estimate θ̂ that maximizes

the auxiliary function:

Q(θ̂|θ) = Eh,w

{
ln p(X ,h,w|θ̂)

∣∣∣∣X ,θ
}

= Eh,w

{∑
ijk

ln [p(xk
ij |hi,wk, θ̂)p(hi,wk)]

∣∣∣∣X ,θ
}

(3)
To maximize Eq.3, we need to estimate the posterior distribu-
tions of the latent variables given the model parameters θ. De-
note Ni =

∑K
k=1 Hi(k) as the number of training i-vectors

from the i-th speaker and Mk =
∑S

i=1 Hi(k) as the number of
training i-vectors falling in the k-th SNR group. Then the E-step
is as follows:

L1
i = I +NiV

>Φ−1
1 V i = 1, . . . , S (4)

L2
k = I +MkU>Φ−1

2 U k = 1, . . . ,K (5)

〈hi|X 〉 = (L1
i )
−1V>Φ−1

1

K∑

k=1

Hi(k)∑

j=1

(xk
ij −m) (6)

〈wk|X 〉 = (L2
k)
−1U>Φ−1

2

S∑

i=1

Hi(k)∑

j=1

(xk
ij −m) (7)

〈hih
T
i |X 〉 = (L1

i )
−1 + 〈hi|X 〉〈hi|X 〉T (8)

〈wkwT
k|X 〉 = (L2

k)
−1 + 〈wk|X 〉〈wk|X 〉T (9)

〈wkhT
i |X 〉 = 〈wk|X 〉〈hi|X 〉T (10)

〈hiw
T
k|X 〉 = 〈hi|X 〉〈wk|X 〉T (11)

where

Φ1 = UU> + Σ and Φ2 = VV> + Σ,

and 〈·〉 denotes expectation.

Given Eq. 4–Eq. 11, the model parameters θ̂ can be esti-
mated via the M-step as follows:

m =
1

N

S∑

i=1

K∑

k=1

Hi(k)∑

j=1

xk
ij (12)

V =





S∑

i=1

K∑

k=1

Hi(k)∑

j=1

[
(xk

ij −m)〈hi|X 〉 −U〈wkhT
i |X 〉

]




×





S∑

i=1

K∑

k=1

Hi(k)∑

j=1

〈hih
T
i |X 〉





−1

(13)

U =





S∑

i=1

K∑

k=1

Hi(k)∑

j=1

[
(xk

ij −m)〈wk|X 〉 −V〈hiw
T
k|X 〉

]




×





S∑

i=1

K∑

k=1

Hi(k)∑

j=1

〈wkwT
k|X 〉





−1

(14)

Σ =
1

N

S∑

i=1

K∑

k=1

Hi(k)∑

j=1

[
(xk

ij −m)(xk
ij −m)>

−V〈hi|X 〉(xk
ij −m)> −U〈wk|X 〉(xk

ij −m)>
]

(15)
where N =

∑S
i=1 Ni =

∑K
k=1 Mk. Algorithm 1 shows the
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Algorithm 1 EM Algorithm for SNR-Invariant PLDA
Input:

Development data set consists of LDA- or NFA-reduced [30]
i-vectors X = {xk

ij |i = 1, . . . , S; j = 1, . . . , Hi(k); k =
1, . . . ,K}, with speaker labels and SNR group labels.

Initialization:

Σ← 0.01× I;

V,U ← eigenvectors of PCA projection matrix obtained
from data set X ;

Parameter Estimation:

1) Compute m via Eq. 12;

2) Compute L1
i and L2

k according to Eq. 4 and Eq. 5;

3) Compute the sufficient statistics using Eq. 6 to Eq. 11;

4) Update the model parameters using Eq. 13 to Eq. 15;

5) Go to step 2 until convergence;

Return: The parameters of the SNR-invariant PLDA model
θ = {m,V,U,Σ}.

procedures of applying the EM algorithm.

3.3. Likelihood Ratio Scores

Given a test i-vector xt and a target-speaker i-vector xs, the
likelihood ratio score can be computed as follows:

L(xs,xt) = ln
P (xs,xt|same-speaker)

P (xs,xt|different-speakers)

= const +
1

2
x>s Qxs +

1

2
x>t Qxt + x>s Pxt

(16)
where

P = Σ−1
totΣac(Σtot −ΣacΣ

−1
totΣac)

−1,

Q = Σ−1
tot − (Σtot −ΣacΣ

−1
totΣac)

−1,

Σac = VV>, and Σtot = VV> + UU> + Σ.

4. Experiments
4.1. Speech Data and Front-End Processing

Experiments were performed on common conditions (CC) 1
and 4 of the core set of NIST 2012 Speaker Recognition Eval-
uation [31]. The test segments under CC1 and CC4 comprise
interview conversations and telephone conversations, respec-
tively. The microphone and telephone speech files from NIST
2005–2008 SREs were used as development data to train the
gender-dependent UBMs and total variability matrices.

A two-channel voice activity detector (VAD) [32, 33] was
applied to detect the speech regions of each utterance. 19 Mel
frequency cepstral coefficients together with log energy plus
their 1st- and 2nd-derivatives were extracted from the speech
regions as detected by the VAD, followed by cepstral mean nor-
malization [34] and feature warping [15] with a window size of
3 seconds. A 60-dim acoustic vector was extracted every 10ms,
using a Hamming window of 25ms.
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Figure 1: SNR distributions of test utterances in CC1 and CC4
of NIST 2012 SRE.

4.2. Preparation of Training Data

The telephone and microphone speech files in 2006–2010
SREs, excluding speakers with less than two utterances, were
used as the training data to train the gender-dependent subspace
projection matrices and all PLDA models.

The SNR distributions of test utterances in CC1 and CC4
are shown in Fig. 1. Because the SNR range of the test utter-
ances in CC4 is large,1 the SNR mismatch between the train-
ing and the test utterances has significant effect on the test tri-
als in CC4. To address this issue, we added noise to the tele-
phone training data. Specifically, for each telephone speech
file, a noise waveform file was randomly selected from the 30
noise waveform files in the PRISM data set [35] and added
to the speech file at a target SNR using the FaNT tool [36].
The target SNR was selected in turn from an SNR set com-
prising {6dB, 7dB, . . . , 15dB}. As a result, for each original
file, ten noise corrupted files with different SNRs were gener-
ated. Then, we used the voltmeter function of FaNT and the
decisions of the VAD to estimate the “actual” SNR of the noise-
corrupted speech files. While the actual SNR is close to the
target SNR, they will not be exactly the same. The distribu-
tion of the actual SNRs (as measured by FaNT) of the noise-
corrupted speech files together with the original telephone and
microphone speech files is shown in the bottom panel of Fig. 2.

For experiments on CC4, 14,226 (resp. 22,356) noise cor-
rupted files from 763 male (resp. 1030 female) speakers were
combined with the original telephone and microphone utter-
ances in 2006–2010 SREs to form the training set for train-
ing the male PLDA models. For experiments on CC1, the mi-
crophone utterances from 347 male speakers and 425 female
speakers in NIST 2006-2010 SREs were used as the training
set. The SNR distributions of the training sets used for male
speakers in CC1 and CC4 are respectively shown in Fig. 2.

1In the SRE, noise was artificially added to the test segments of CC4.

Table 1: Division of male training utterances for CC1 of NIST
2012 SRE into K = 3 SNR sub-groups.

Sub-Group SNR Range (dB) No. of Utterances

1 SNR ≤ 10 4022
2 10 < SNR ≤ 16 4023
3 SNR > 16 3963
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Table 2: Performance of PLDA, mPLDA [25] and SNR-invariant PLDA on CC1 and CC4 of NIST 2012 SRE (core set). K is the
number of SNR groups and Q is the dimension of SNR factors in SNR-invariant PLDA.

Method
Parameters CC1 CC4

K Q
Male Female Male Female

EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

PLDA – – 5.42 0.371 7.53 0.531 3.13 0.312 2.82 0.341
mPLDA – – 5.28 0.415 7.70 0.539 2.88 0.329 2.71 0.332

SNR-invariant PLDA

2 40 5.41 0.376 7.03 0.525 2.75 0.290 2.42 0.325
3 40 5.42 0.382 6.93 0.528 2.72 0.289 2.36 0.314
4 40 5.42 0.392 7.03 0.522 2.70 0.289 2.39 0.329
5 40 5.28 0.381 6.89 0.522 2.67 0.291 2.38 0.322
6 40 5.29 0.388 6.90 0.536 2.63 0.287 2.43 0.319
7 30 5.48 0.385 7.03 0.533 2.63 0.294 2.32 0.316
8 30 5.56 0.384 7.05 0.545 2.70 0.292 2.29 0.313
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Figure 2: SNR distributions of the training utterances for male
speakers in CC1 and CC4.

4.3. I-vector Preprocessing

The extraction of i-vectors was based on a gender-dependent
UBM with 1024 mixtures and a total variability matrix with 500
total factors. Similar to [37], we applied within-class covari-
ance normalization (WCCN) [4] and i-vector length normaliza-
tion (LN) to the 500-dimensional i-vectors. Then nonparamet-
ric feature analysis (NFA) [30] was used to reduce intra-speaker
variability and emphasize discriminative class boundary infor-
mation. After this procedure, the dimension of i-vectors was
reduced to 200. Then PLDA models and SNR-invariant PLDA
models with 150 latent identity factors were trained. Also, the
SNR-dependent mixture of PLDA in [25] was used as a com-
parison, which is named as mPLDA in the sequel.

4.4. SNR Sub-group Division

To train the SNR-invariant PLDA models, the training set was
divided into K groups according to the measured SNRs of the
utterances. The SNRs of the whole training set were divided
into K SNR intervals. The k-th group comprises the i-vectors
whose corresponding utterances have SNR falling in the k-th
SNR interval. The numbers of the i-vectors in each sub-group
should be comparable. For example, when K = 3, the divi-
sions for the training set used for male speakers in CC1 and the

numbers of training utterances falling in each of the sub-groups
are shown in Table 1.

4.5. Results and Discussions

This section reports the performance of different systems based
on equal error rate (EER) and minimum DCF (minDCF) [31].

Results on CC1 in Table 2 show that mPLDA and SNR-
invariant PLDA can achieve a lower EER than PLDA for male
test segments. For female test segments, SNR-invariant PLDA
outperforms mPLDA and PLDA in terms of both EER and
minDCF, and it achieves the best performance when the num-
ber of SNR groups was set to 5. The results suggest that SNR-
invariant PLDA can address SNR mismatch under noisy condi-
tions.

Results on CC4 in Table 2 show that mPLDA and SNR-
invariant PLDA outperform PLDA, and the best result was
achieved by SNR-invariant PLDA. Moreover, the performance
of SNR-invariant PLDA stays stable for different numbers of
SNR groups.

For SNR-invariant PLDA, it is important to determine an
appropriate value of K, especially when the training samples are
not abundant (such as in CC1). In particular, in the two extreme
cases where K is either very small or very large (same as the
number of training i-vectors), the performance gain of SNR-
invariant PLDA will be limited. This is because for the former,
each of the SNR factors (wk in Eq. 2) will need to represent
the i-vectors with a wide range of SNR. On the other hand, for
the latter case, there will be so many SNR factors in Eq. 2 such
that each i-vector is considered to be obtained from a distinct
SNR group. This means that in such extreme situations, the
SNR-invariant PLDA model reduces to the traditional Gaussian
PLDA, which only considers the session variability instead of
the variability caused by different levels of SNR.

5. Conclusions
In this paper, SNR-invariant PLDA was proposed to deal with
the mismatch caused by different levels of background noise.
By assuming that the i-vectors share the same SNR-specific in-
formation when the corresponding utterances’ SNRs fall within
a narrow range, we incorporated an SNR factor to the tradi-
tional Gaussian PLDA model. Experiments on the NIST SRE
2012 demonstrate the effectiveness of the proposed method.
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