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Abstract

System combination is a common approach to improving results
for both speech transcription and keyword spotting—especially
in the context of low-resourced languages where building mul-
tiple complementary models requires less computational effort.
Using state-of-the-art CNN and DNN acoustic models, we ana-
lyze the performance, cost, and trade-offs of four system combi-
nation approaches: feature combination, joint decoding, hitlist
combination, and a novel lattice combination method. Previous
work has focused solely on accuracy comparisons. We show
that joint decoding, lattice combination, and hitlist combination
perform comparably, significantly better than feature combina-
tion. However, for practical systems, earlier combination re-
duces computational cost and storage requirements. Results are
reported on four languages from the IARPA Babel dataset.
Index Terms: speech recognition, keyword spotting, system
combination, joint decoding, lattice combination

1. Introduction

Keyword spotting (KWS) in low resourced languages has been
a recent topic of significant interest [1, 2, 3, 4]. Typical sys-
tems must struggle with limited data and high word error rates
(WER). It is becoming increasingly common to increase perfor-
mance through the combination of multiple systems [5, 6]. With
the advent of deep learning, a large variety of possible models
can be trained and used. While each individual model must be
trained—increasing the overall cost of the final system—it is
a one time cost that can be reduced through parallel training
if the resources are available. Depending on the goal, the in-
creased performance may be worth the additional training cost.
Obviously the additional training time is not the only cost when
using multiple models; additional models also increase decod-
ing and keyword search time.

Little consideration has been paid to the trade-off between
system performance and computational requirements in previ-
ous work. Most work focuses only on the final performance
metrics when comparing combination techniques [7]. Joint de-
coding, similar to multi-stream ASR [8], combines multiple
systems during decoding and lattice generation [9]. This comes
with an increase in decoding time, but it should not affect any
subsequent processing. Hitlist combination is another common
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approach [2, 6, 10]. It combines results only after both decod-
ing and keyword search have been performed by each system
separately. A comparison of just system performance ignores
the significant differences in computational effort and storage
required—both are important in system deployment.

We also investigate two additional combination strategies.
Feature combination takes different types of features and con-
catenates them together. This is commonly done with different
types of cepstral, pitch, and bottleneck features [11, 12]. Af-
ter decoding, lattices can also be combined to generate a single
lattice. To our knowledge, this is the first time lattice combina-
tion has been investigated in the context of KWS. Earlier work
jointly searched multiple lattices in order to minimize bayes risk
for ASR, but the individual lattices were never combined [13].
Lattice combination still requires multiple decodings, but elim-
inates the need for additional storage.

Previous studies have focused only on combining two sys-
tems, either a tandem and hybrid system, or two GMM systems
[7, 13]. We expand upon this by looking at three state-of-the-art
acoustic models—a CNN and two DNNs trained on different
sets of bottleneck features. Both two system and three system
combinations are considered.

2. Combination Approaches

We explore several combination approaches, ranging from early
fusion to late fusion. In addition to the differences in perfor-
mance, each approach varies in flexibility and computational
cost. It is important to acknowledge the trade-offs each ap-
proach entails. If systems are not designed with system com-
bination in mind, they will be difficult to combine using cer-
tain approaches. Typically, the earlier the fusion, the more con-
straints are placed on the systems.

2.1. Cross Adaptation

Since our DNN acoustic models use speaker adapted bottleneck
features, a first decoding pass is required to compute the fMLLR
transform. This is typically done with a GMM model. As we
are already exploring system combination with CNN and DNN
acoustic models, there is no additional cost to performing de-
coding with the CNN. The only requirement is the targets for
the CNN must be the same as the GMM states used during the
fMLLR transform estimation. Since the CNN is more accurate
than the GMM, it may improve the accuracy of the fMLLR es-
timation and, ultimately, the final WER.

2.2. Feature Combination

We have trained two DNNs on different types of features. The
first are bottleneck features generated from a DNN, and the sec-
ond are bottleneck features trained from a CNN. These features
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can be concatenated for an early fusion of the systems. The two
types of features still need to be generated separately. The mod-
els will be slightly larger since the initial feature size is doubled.
If GMM:s used for fMLLR computation share the same set of
acoustic states, the decoding time should not be affected much
as a single first-pass decoding can be used. Prior to combining
the bottleneck features, two sets of fMLLR transforms are com-
puted with two GMM acoustic models. Only after SAT has been
applied are the features combined. It would also be possible to
combine the features before GMM training so that only one SAT
model is required, but we chose to use the models already built
instead. Initial results show a decrease in performance due to
the larger feature vector used during GMM training.

2.3. Joint Decoding

Multiple models can be used in parallel for joint decoding. The
predictions from each model are averaged. Each system could
potentially be weighted based on some characteristic, but we
use an equal weight for each system in this work. Since a for-
ward pass of multiple networks is required, the decoding time
increases. Only one graph and lattice are maintained during de-
coding, so the increase in decoding time is less than decoding
each system separately. The main restriction is each model must
have the same targets. Specifically, we use a frame-synchronous
approach. At each frame, the log posteriors from each system
are averaged together. While it would also be logical to take the
average of the posteriors prior to applying the log, we others
[13]—have obtained better performance by averaging the log
posteriors. If the targets were different, it could still be possible
to perform joint decoding if maps between the two clusterings
are provided [14], but this is beyond the scope of this work.

2.4. Lattice Combination

Previous work has used multiple lattices to generate the one-
best hypothesis [13], but we are unaware of previous work com-
bining multiple lattices for KWS. Prior to combining the lat-
tices, the posteriors in each lattice are scaled by their respective
combination weight. Omitting this step can cause issues with
downstream processing. Attempting to interleave the lattices
would be a difficult process. Instead we attach the start and end
nodes of each lattice together. Once they have been attached,
we convert the lattice to a consensus network (Cnet) [15]. This
process implicitly handles the interleaving of the arcs. An alter-
native is to generate Cnets for each system, and then combine
those Cnets. Preliminary experiments gave similar results, but
required more computational effort.

Lattice combination is an expensive operation that takes
nearly as long as decoding. A significant portion of this com-
putation comes from reading and writing the files to disk; the
required computation could be reduced through optimization. It
still saves some computation as keyword search does not need
to be repeated, and requires no additional storage. The main
requirement is that all systems need to use the same pronuncia-
tion lexicon. This requirement is for keyword search. We use a
fuzzy phonetic search to improve results that can only use one
lexicon for all the words.

2.5. Hitlist Combination

Hitlist combination is the most computationally expensive ap-
proach to system combination. Given multiple hitlists, the
scores for the individual hits are combined to maximize their
score on a tune set—while the combination weights could in
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principle be estimated for each individual keyword, we only
generate a weight for the set of IV keywords and OOV key-
words. While the actual combination is quick, the extra compu-
tation comes from performing a separate decoding and keyword
search for each system. Multiple lattices or indexes must be
stored, significantly increasing the storage cost. This increased
cost also comes with increased flexibility. No restrictions are
placed on state targets or lexicons; each system could even use
a different phone set. Unlike other approaches to system combi-
nation, hitlist combination lends itself to a relatively straightfor-
ward approach to learning combination weights that adds little
additional overhead [2].

3. Experimental Setup

We use the Sage ASR toolkit [16]. Sage is BBN’s newly devel-
oped STT platform that integrates technologies from multiple
sources, each of which has a particular strength. In Sage, we
combine proprietary sources, such as BBN’s Byblos [17], with
open source toolkits, such as Kaldi [18], CNTK [19] and Ten-
sorflow [20]. For example, DNN can be trained using Byblos,
Kaldi nnetl [21] or nnet2, CNN using Kaldi or Caffé [22], and
LSTM using Kaldi as well as CNTK. Sage also includes soft-
ware supporting keyword search from Byblos [23, 24]. The in-
tegration of these technologies is achieved by creating wrapper
modules around major functional blocks that can be easily con-
nected or interchanged. In addition, Sage software has been de-
signed to make it easy for a group of researchers to use the sys-
tem, to transfer experiments from one person to another, to keep
track of partial runs, etc. Sage also includes a cross-toolkit FST
recognizer that supports models built using the various compo-
nent technologies.

The baseline DNN system uses a bottleneck MLP with
a bottleneck layer of 40 nodes. These features are used for
speaker-adapted training (SAT), and the final features are the
fMLLR transformed bottleneck features. Thirteen frames of the
fMLLR features are stacked together as input to the sequence
trained DNN acoustic model. Each of the six hidden layers has
2048 nodes, and the output layer has approximately 4500 tied-
state targets. Two additional acoustic models are trained. The
first is a DNN using bottleneck features derived from a CNN. It
has the same structure as the bottleneck MLP, except two con-
volutional layers are prepended. The second acoustic model is
a CNN—two convolutional layers followed by four fully con-
nected layers—using the filter bank features directly.

All experiments are performed on data from the IARPA Ba-
bel project [25]. We selected four development languages from
the final year of the program: Amharic (IARPA-babel307b-
v1.0b), Guarani (IARPA-babel305b-v1.0c), Igbo (IARPA-
babel306b-v2.0c), and Pashto (IARPA-babel104b-v0.bY). For
each language, the full language pack (FLP) is used, contain-
ing approximately 40 hours of transcribed audio—the audio is
conversational telephone speech collected in a variety of condi-
tions. Lexicons are derived using simple G2P rules [26]. Tri-
gram language models are built only from the transcriptions.
This data can be further augmented with data collected from
the web [27]. Decoding is performed on an additional 10 hours
of development data, and keyword search uses a set of approx-
imately 2000 keywords for each language. Both whole word
and phonetic search are used for keyword spotting [2].

Actual term-weighted value (ATWYV) is the primary mea-
sure of interest for the IARPA Babel program. ATWYV was also
used in the NIST 2006 Spoken Term Detection evaluation [28].
In this performance metric, all keywords are equally weighted.



| Language | First Pass Model [ WER | ATWV |
Ambharic GMM 44.2 0.582
Ambharic CNN 43.6 0.583
Guarani GMM 459 0.564
Guarani CNN 45.7 0.571
Igbo GMM 55.7 0.335
Igbo CNN 55.5 0.339
Pashto GMM 48.2 0411
Pashto CNN 48.1 0411

Table 1: Comparison of using GMM and CNN models for first
pass decoding in a DNN system.

| Language [ Baseline [ Joint [ Lattice [ Hitlist ‘

Amharic | 0.583 0.599 | 0.600 0.607
Guarani 0.571 0.584 | 0.579 0.587
Igbo 0.339 0.353 | 0.357 0.354
Pashto 0.411 0.428 | 0.430 0.432

Table 2: Comparison of system combination approaches using
CNN and DNN acoustic models. Joint refers to joint decoding.
Lattice refers to lattice combination. Hitlist refers to hitlist com-
bination. Baseline refers to best single system performance.

Missing a single occurrence of a rare word can affect the fi-
nal score as much as missing a more common word dozens
of times. Wegmann et al. have a more detailed discussion of
ATWYV in relation to the IARPA Babel program [6]. While
ATWYV numbers are commonly reported for in-vocabulary and
out-of-vocabulary (OOV) keywords separately, our focus is on
overall performance. The number of OOV keywords in the FLP
task is relatively small, so we do not spend the extra computa-
tional effort on techniques designed to specifically detect them
[4, 29, 30, 31, 32].

4. Experimental Results
4.1. Cross Adaptation

Table 1 shows a performance comparison for our baseline DNN
system with either a GMM or CNN for first pass decoding.
Overall gains from using the CNN are small for all languages,
but it never produces a degradation in performance. These
gains come from the alignments produced for fMLLR feature
computation—the CNN typically has a 5% lower WER com-
pared to the GMM. The largest computational requirement is
the training of the CNN itself, however, this can be done in par-
allel to the DNN model. Since the goal of this work is to explore
system combination, the training of the CNN is required any-
way. While the performance may not justify using the model for
first pass decoding, it also decreases the overall decoding time
by an average of 15%. In our standard setup, the GMM requires
two passes to generate the fMLLR features; the CNN only re-
quires one. Given the decrease in decoding time and the associ-
ated gains in performance, all further experiments will use the
CNN model for first pass decoding. Note that when discussing
timing information in the following sections, we consider the
DNN system using a GMM for first pass decoding as a base-
line. All numbers will be relative to that system.

4.2. CNN + DNN System Combination

In addition to being used for first pass decoding, the CNN sys-
tem can be incorporated in three additional ways as described in
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| Language [ Baseline [ Feature | Joint [ Lattice | Hitlist |

Ambharic | 0.583 0.592 0.603 | 0.606 0.607
Guarani 0.571 0.560 0.582 | 0.588 0.585
Igbo 0.339 0.351 0.365 | 0.364 0.365
Pashto 0411 0.427 0.431 | 0.437 0.436

Table 3: Comparison of system combination approaches using
DNN acoustic models with CNN-BN and DNN-BN features.
Feature refers to feature combination.

Section 2. A comparison of ATWV performance for each type
is shown in Table 2. All combination types give about 1.5 to
2 points absolute improvement in ATWV. Hitlist combination
tends to give the best overall performance, but the other two
types are close. Note that the joint decoding approach gives
similar performance and still requires approximately 5% less
decoding time than the baseline system. It is able to beat the
baseline system because the performance gain from using the
CNN in the first pass is more than the cost of decoding with
two models. Lattice combination and hitlist combination both
require double the decoding time and hitlist combination also
doubles the keyword search time and storage requirements.

4.3. CNN-BN + DNN-BN Feature Combination

We can incorporate the CNN in one additional way. Instead of
using the CNN as an acoustic model, it can be used to train bot-
tleneck features. This produces a second set of features in addi-
tion to the standard bottleneck features trained from a DNN. We
label the system using the CNN bottleneck features as CNN-
BN and the standard system using bottleneck features from a
DNN as DNN—though both systems ultimately use a DNN as
the acoustic model. Systems using these features can be com-
bined in the same way as in the previous section, but the features
themselves can also be combined as input to a single model. Re-
sults for the four approaches are presented in Table 3.

Performance for lattice combination and hitlist combination
are similar. Joint decoding is slightly behind and feature com-
bination is even further behind. Feature combination provides
a gain over the baseline—except for Guarani—but is far behind
the results of the other techniques. It is a more efficient system
to train and use, the decrease in computational cost is unlikely
to be worth the decrease in performance though.

The overall pattern of results is similar to the previous
CNN+DNN results. The extra bottleneck feature computation
is more expensive than using filterbank features, so joint decod-
ing uses all of the gains from the CNN as a first pass decoding
and takes approximately the same amount of time as the base-
line system. Note that since we are still using the CNN for first
pass decoding, these results actually require a total of three sys-
tems to be trained. In the next section we take full advantage of
all three models by combining them all.

4.4. Combining All Systems

We can also combine all three systems. Since the systems can
always be combined in two stages—first combining two sys-
tems with one approach, and then combining with the final sys-
tem using another—there are a large number of possible combi-
nation strategies. For simplicity, we only consider combination
in a single step using the same approach for all three systems.
Results are shown in Table 4.

With three systems, the overall pattern of results is simi-
lar. Joint decoding ranges from 0.4 to 1.2 points worse than
hitlist combination, and lattice combination is never more than



[ Language | Baseline | Joint | Lattice | Hitlist |

Ambharic 0.583 0.606 | 0.615 0.618
Guarani 0.571 0.590 | 0.594 0.594
Igbo 0.339 0.366 | 0.367 0.372
Pashto 0.411 0.440 | 0.445 0.444

Table 4: Comparison of system combination approaches using
all three systems.

0.5 points worse. It is expected that hitlist combination would
further outperform the other types of system combination as the
number of systems increased. This is not the case in these re-
sults. Even with three systems, joint decoding only requires
15% more decoding time than the baseline system. It is clearly
an efficient method to increase performance at decode time, but
there is a limit. Moving from one system to two gives a greater
gain than moving from two to three; additional systems would
unlikely see further significant gains.

5. Discussion
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Figure 1: Relative computational cost relative to baseline versus
ATWYV improvement.

In the previous sections, we briefly discussed the decoding
cost as the number of systems increased. Figure 1 makes the
trade-off between performance and computational time explicit.
These values are averaged over all four languages for each ap-
proach. Computational cost is the sum of decoding, keyword
search (approximately half the cost of decoding), and any ad-
ditional cost related to the combination approach. This cost is
in terms of total clock time. In practice, these operations are
parallelized, but this does not affect the relative differences. All
results are relative to the baseline DNN systems using a GMM
for first pass decoding reported in Table 1. Note that for the
two system results—except for feature combination—only the
CNN-+DNN combination is considered. Since it was using the
CNN for first pass decoding, the CNN-BN+DNN-BN results
(c.f. Section 4.3) actually used three systems in total.

The figure makes it clear how little joint decoding and fea-
ture combination affect the overall computational time com-
pared to hitlist combination and lattice combination. Joint de-
coding provides the majority of the performance gain, with neg-
ligible cost. If an additional gain is required, it can be ob-
tained through lattice combination. Hitlist combination some-

1916

times brings further gains, but requires each lattice (or its related
index) to be stored on disk for keyword search.

When combining three systems, hitlist combination has a
slight edge over lattice combination. Intuitively, the gap be-
tween hitlist combination and other techniques should only
grow as the number of systems increases. However, this is not
the case in our results. Part of the reason may be due to the
low OOV rate. In previous years of the IARPA Babel program,
when the amount of training data was less, system combination
was especially important because it increased the total number
of hits for OOV keywords. Comparing the recall rates for the
different combination experiments shows little variation.

Hitlist combination has another implicit advantage; the
weights used during combination can be easily trained even
for large numbers of systems. For joint decoding and lattice
combination, we give each system an equal weight. Prelimi-
nary experiments testing other weights had little effect on final
performance. There is no simple way to learn ideal weights.
The obvious approach would be a grid search over possible
settings, but this would require many passes of decoding and
keyword search, eliminating the computational advantage these
techniques hold over hitlist combination. As the number of
systems grows, this search approach becomes even more im-
practical. In future work, we plan to investigate more efficient
methods of learning the weights for joint decoding and lattice
combination in order to further close the gap with hitlist combi-
nation.

As mentioned previously, each approach also comes with
limitations or restrictions. Joint decoding requires all systems to
have the same state targets—though, as previously mentioned—
this restriction could be lifted if there is a map between to two
sets of targets. Lattice combination requires all systems use the
same lexicon. In order to perform this study, we built all sys-
tems so as to satisfy the requirements of all approaches. This
potentially limited the benefits of lattice and hitlist combina-
tion. Previous work has shown large gains by combining hitlists
from whole-word decodes and hitlists from subword decodes
[33, 29]. Joint decoding cannot function in that scenario.

6. Conclusions

We have shown that using a CNN acoustic model for first pass
decoding can give small gains over the commonly used GMM
model. The CNN can also be used in joint decoding to further
improve performance with little additional computational cost.
Hitlist combination is generally assumed to be the best perform-
ing approach to system combination for keyword spotting, but
it is also the most expensive due to the multiple decodings and
searches it requires. When combining two systems, we have
demonstrated joint decoding performs nearly as well as hitlist
combination with a minimal increase in overall decoding time.
It provides the best trade-off between performance and cost.
Lattice combination provides similar performance and reduces
storage cost compared to hitlist combination.Feature combina-
tion is a little behind the other techniques, but only requires a
single acoustic model.

Hitlist combination can give a small additional gain, but
requires a large amount of computational effort and storage.
These effects hold even when moving to three systems. Assum-
ing the systems meet the restrictions required by joint decoding,
it would be the preferred method of system combination. Hitlist
combination should be reserved for when the systems cannot be
combined through joint decoding or lattice combination, where
the gains from hitlist combination are potentially greater.
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