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Abstract
The goal of this paper is to use multi-task learning to efficiently
scale slot filling models for natural language understanding to
handle multiple target tasks or domains. The key to scalability
is reducing the amount of training data needed to learn a model
for a new task. The proposed multi-task model delivers better
performance with less data by leveraging patterns that it learns
from the other tasks. The approach supports an open vocabu-
lary, which allows the models to generalize to unseen words,
which is particularly important when very little training data is
used. A newly collected crowd-sourced data set, covering four
different domains, is used to demonstrate the effectiveness of
the domain adaptation and open vocabulary techniques.
Index Terms: language understanding, slot filling, multi-task,
open vocabulary

1. Introduction
Slot filling models are a useful method for simple natural lan-
guage understanding tasks, where information can be extracted
from a sentence and used to perform some structured action.
For example, dates, departure cities and destinations represent
slots to fill in a flight booking task. This information is extracted
from natural language queries leveraging typical context asso-
ciated with each slot type. Researchers have been exploring
data-driven approaches to learning models for automatic iden-
tification of slot information since the 90’s, and significant ad-
vances have been made [1]. Our paper builds on recent work on
slot-filling using recurrent neural networks (RNNs) with a focus
on the problem of training from minimal annotated data, taking
an approach of sharing data from multiple tasks to reduce the
amount of data for developing a new task.

As candidate tasks, we consider the actions that a user
might perform via apps on their phone. Typically, a separate
slot-filling model would be trained for each app. For example,
one model understands queries about classified ads for cars [2]
and another model handles queries about the weather [3]. As
the number of apps increases, this approach becomes impracti-
cal due to the burden of collecting and labeling the training data
for each model. In addition, using independent models for each
task has high storage costs for mobile devices.

Alternatively, a single model can be learned to handle all of
the apps. This type of approach is known as multi-task learning
and can lead to improved performance on all of the tasks due to
information sharing between the different apps [4]. Multi-task
learning in combination with neural networks has been shown
to be effective for natural language processing tasks [5]. When
using RNNs for slot filling, almost all of the model parameters
can be shared between tasks. In our study, only the relatively

small output layer, which consists of slot embeddings, is indi-
vidual to each app. More sharing means that less training data
per app can be used and there will still be enough data to effec-
tively train the network. The multi-task approach has lower data
requirements, which leads to a large cost savings and makes this
approach scalable to large numbers of applications.

The shared representation that we build on leverages re-
cent work on slot filling models that use neural network based
approaches. Early neural network based papers propose feed-
forward [6] or RNN architectures [7, 8]. The focus shifted to
RNN’s with long-short term memory cells (LSTMs) [9, 10, 11,
12] after LSTMs were shown to be effective for other tasks [13].
The most recent papers use variations on LSTM sequence mod-
els, including encoder-decoder, external memory, or attention
architectures [14, 15, 16]. The particular variant that we build
on is a bidirectional LSTM, similar to [17, 12].

One highly desirable property of a good slot filling model is
to generalize to previously unseen slot values. For instance, we
should not expect that the model will see the names of all the
cities during training time, especially when only a small amount
of training data is used. We address the generalizability issue
by incorporating the open vocabulary embeddings from Ling
et al. into our model [18]. These embeddings work by using
a character RNN to process a word one letter at a time. This
way the model can learn to share parameters between different
words that use the same morphemes. For example BBQ restau-
rants frequently use words like “smokehouse”, “steakhouse”,
and “roadhouse” in their names and “Bayside”,“Bayview”, and
“Baywood” are all streets in San Francisco. Recognizing these
patterns would be helpful in detecting a restaurant or street
name slot, respectively.

The two main contributions of this work are the multi-task
model and the use of the open vocabulary character-based em-
beddings, which together allow for scalable slot filling models.
Our work on multi-task learning in slot filling differs from its
previous use in [19] in that we allow for soft sharing between
tasks instead of explicitly matching slots to each other across
different tasks. A limitation of explicit slot matching is that
two slots that appear to have the same underlying type, such
as location-based slots, may actually use the slot information
in different ways depending on the overall intent of the task.
In our model, the sharing between tasks is done implicitly by
the neural network. Our approach to handling words unseen in
training data is different from the delexicalization proposed in
[20] in that we do not require the vocabulary items associated
with slots and values to be prespecified. It is complementary to
work on extending domain coverage [21, 22].

The proposed model is described in more detail in Sec-
tion 2. The approach is assessed on a new data collection based
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on four apps, described in Section 3. The experiments described
in Section 4 investigate how much data is necessary for the n-th
app using a multi-task model that leverages the data from the
previous n − 1 apps, with results compared against the single-
task model that only utilizes the data from the n-th app. We
conclude in Section 5 with a summary of the key findings and
discussion of opportunities for future work.

2. Model
Our model has a word embedding layer, followed by a bi-
directional LSTM (bi-LSTM), and a softmax output layer. The
bi-LSTM allows the model to use information from both the
right and left contexts of each word when making predictions.
We choose this architecture because similar models have been
used in prior work on slot filling and have achieved good results
[17, 12]. The LSTM gates are used as defined by Sak et al. in-
cluding the use of the linear projection layer on the output of the
LSTM [23]. The purpose of the projection layer is to produce
a model with fewer parameters without reducing the number of
LSTM memory cells. For the multi-task model, the word em-
beddings and the bi-LSTM parameters are shared across tasks
but each task has its own softmax layer. This means that if the
multi-task model has half a million parameters, only a couple
thousand of them are unique to each task and the other 99.5%
are shared between all of the tasks.

The slot labels are encoded in BIO format [24] indicating
if a word is the beginning, inside or outside any particular slot.
Decoding is done greedily. If a label does not follow the BIO
syntax rules, i.e. an inside tag must follow the appropriate be-
gin tag, then it is replaced with the outside label. Evaluation is
done using the CoNLL evaluation script [25] to calculate the F1
score. This is the standard way of evaluating slot-filling models
in the literature.

In recent work on language modeling, a neural architecture
that combined fixed word embeddings with character-based em-
beddings was found to to be useful for handling previously un-
seen words [26]. Based on that result, the embeddings in the
open vocabulary model are a concatenation of the character-
based embeddings with fixed word embeddings. When an out-
of-vocabulary word is encountered, its character-based embed-
ding is concatenated with the embedding for the unknown word
token. The character-based embeddings are generated from a
two layer bi-LSTM that processes each word one character at a
time. The character-based word embedding is produced by con-
catenating the last states from each of the directional LSTM’s
in the second layer and passing them through a linear layer for
dimensionality reduction.

3. Data
Crowd-sourced data was collected simulating common use
cases for four different apps: United Airlines, Airbnb, Grey-
hound bus service and OpenTable. The corresponding actions
are booking a flight, renting a home, buying bus tickets, and
making a reservation at a restaurant. In order to elicit natural
language, crowd workers were instructed to simulate a conver-
sation with a friend planning an activity as opposed to giving
a command to the computer. Workers were prompted with a
slot type/value pair and asked to form a reply to their friend us-
ing that information. The instructions were to not include any
other potential slots in the sentence but this instruction was not
always followed by the workers.

Slot types were chosen to roughly correspond to form fields

Data set Queries Slot Types
United App 20,697 12
OpenTable 3,151 6
Greyhound 4,951 13

Airbnb 4,666 11

Table 1: Data statistics for each of the four target applications.

App Slot Types
Airbnb number of people, type of room, desired

amenities, start and end dates, date range,
location, listing type and three price-related
slots (desired price, lower and upper bounds)

Greyhound date and time for the departure and return, de-
parture and return locations, number of chil-
dren, adults, and seniors, promotion code,
discount type, whether the trip is one way,
and wheelchair use

OpenTable cuisine, date, time, location, number of peo-
ple, and restaurant name

United return & departure dates and locations (×2
for multi-hop), ticket quantity, ± nonstop,
ticket class, and whether or not the flight is
one way or round trip or multi-hop

Table 2: Listing of slot types for each app.

and UI elements, such as check boxes or dropdown menus, on
the respective apps. The amount of data collected per app and
the number of slot types is listed in Table 1. The slot types for
each app are described in Table 2, and an example labeled sen-
tence from each app is given in Table 3. One thing to notice is
that the the number of slot types is relatively small when com-
pared to the popular ATIS dataset that has over one hundred slot
types [1]. In ATIS, separate slot types would be used for names
of cities, states, or countries whereas in this data all of those
would fall under a single slot for locations.

Slot values were pulled from manually created lists of lo-
cations, dates and times, restaurants, etc. Values for prompt-
ing each rater were sampled from these lists. Workers were
instructed to use different re-phrasings of the prompted values,
but most people used the prompted value verbatim. Occasion-
ally, workers used an unprompted slot value not in the list.

For the word-level LSTM, the data was lower-cased and to-
kenized using a standard tokenizer. Spelling mistakes were not
corrected. All digits were replaced by the ’#’ character. Words
that appear only once in the training data are replaced with an
unknown word token. For the character-based word embed-
dings used in the open vocabulary model, no lower casing or
digit replacement is done.

Due to the way the OpenTable data was collected some slot
values were over-represented leading to over fitting to those par-
ticular values. To correct this problem sentences that used the
over-represented slot values had their values replaced by sam-
pling from a larger list of potential values. The affected slot
types are the ones for cuisine, restaurant names, and locations.
This substitution made the OpenTable data more realistic as
well as more similar to the other data that was collected.

The data we collected for the United Airlines app is an ex-
ception in a few ways: we collected four times as much data
for this app than the other ones; workers were occasionally
prompted with up to four slot type/value pairs; and workers
were instructed to give commands to their device instead of sim-
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App Example Sentence
Airbnb I want to keep the price below <PriceUpper> $1300 per week </PriceUpper>.

Greyhound We should return on <ReturnDate> Jan 11 </ReturnDate>
OpenTable Let’s do something on <Loc> Castro Street </Loc>

United please book flight from <FromLoc> burbank </FromLoc> to <ToLoc> st petersburg </ToLoc>

Table 3: Example labeled sentences from each application.

ulating a conversation with a friend. For all of the other apps,
workers were prompted to use a single slot type per sentence.
We argue that having varying amounts of data for different apps
is a realistic scenario.

Another possible source of data is the Air Travel Informa-
tion Service (ATIS) data set collected in the early 1990’s [1].
However, this data is sufficiently similar to the United collec-
tion, that it is not likely to add sufficient variety to improve
the target domains. Further, it suffers from artifacts of data
collected at a time with speech recognition systems had much
higher error rates. The new data collected for this work fills a
need raised in [27], which concluded that lack of data was an
impediment to progress in slot filling.

4. Experiments
The section describes two sets of experiments: the first is de-
signed to test the effectiveness of the multi-task model and the
second is designed to test the generalizability of the open vo-
cabulary model. The scenario is that we already have n − 1
models in place and we wish to discover how much data will be
necessary to build a model for an additional application.

4.1. Training and Model Configuration Details

The data is split to use 30% for training with 70% to be used for
test data. The reason that a majority of the data is used for test-
ing is that in the second experiment the results are reported sep-
arately for sentences containing out of vocabulary tokens and a
large amount of data is needed to get a sufficient sample size.
Hyperparameter tuning presents a challenge when operating in
a low resource scenario. When there is barely enough data to
train the model none can be spared for a validation set. We used
data from the United app for hyperparameter tuning since it is
the largest and assumed that the hyperparameter settings gener-
alized to the other apps.

Training is done using stochastic gradient descent with
minibatches of 25 sentences. The initial learning rate is 0.3
and is set to decay to 98% of its value every 100 minibatches.
For the multi-task model, training proceeds by alternating be-
tween each of the tasks when selecting the next minibatch. All
the parameters are initialized uniformly in the range [-0.1, 0.1].
Dropout is used for regularization on the word embeddings and
on the outputs from each LSTM layer with the dropout proba-
bility set to 60% [28].

For the single-task model, the word embeddings are 60 di-
mensional and the LSTM is dimension 100 with a 70 dimen-
sional projection layer on the LSTM. For the multi-task model,
word embeddings are 200 dimensional, and the LSTM has 250
dimensions with a 170 dimensional projection layer. For the
open vocabulary version of the model, the 200-dimensional
input is a concatenation of 160-dimensional traditional word
embeddings with 40-dimensional character-based word embed-
dings. The character embedding layer is 15 dimensions, the first
LSTM layer is 40 dimensions with a 20 dimensional projection

layer, and the second LSTM layer is 130 dimensions.

4.2. Multi-task Model Experiments

We compare a single-task model against the multi-task model
for varying amounts of training data. In the multi-task model,
the full amount of data is used for n − 1 apps and the amount
of data is allowed to vary only for the n-th application. These
experiments use the traditional word embeddings with a closed
vocabulary. Since the data for the United app is bigger than
the other three apps combined, it is used as an anchor for the
multi-task model. The other three apps alternate in the position
of the n-th app. The data usage for the n-th app is varied while
the other n− 1 apps in each experiment use the full amount of
available training data. The full amount of training data is dif-
ferent for each app. The data used for the n-th app is 200, 400,
or 800 sentences or all available training data depending on the
experiment. The test set remains fixed for all of the experiments
even as part of the training data is discarded to simulate the low
resource scenario.

In Figure 1 we show the single-task vs. multi-task model
performance for each of three different applications. The multi-
task model outperforms the single-task model at all data sizes,
and the relative performance increases as the size of the train-
ing data decreases. When only 200 sentences of training data
are used, the performance of the multi-task model is about 60%
better than the single-task model for both the Airbnb and Grey-
hound apps. The relative gain for the OpenTable app is 26%.
Because the performance of the multi-task model decays much
more slowly as the amount of training data is reduced, the multi-
task model can deliver the same performance with a consider-
able reduction in the amount of labeled data.

Figure 1: F1 score for multi-task vs. single-task models.

4.3. Open Vocabulary Model Experiments

The open vocabulary model experiments test the ability of the
model to handle unseen words in test time, which are partic-
ularly likely to occur when using a reduced amount of train-
ing data. In these experiments the open vocabulary model is
compared against the fixed embedding model. The results are
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reported separately for the sentences that contain out of vocab-
ulary tokens, since these are where the open vocabulary system
is expected to have an advantage.

Figure 2: OOV rate for each of the n apps.

Figure 2 gives the OOV rate for each app for varying
amounts of training data plotted on a log-log scale. The OOV
words tend to be task-specific terminology. For example, the
OpenTable task is the only one that has names of restaurants
but names of cities are present in all four tasks so they tend to
be covered better. The OOV rate dramatically increases when
the size of the training data is less than 500 sentences. Since our
goal is to operate in the regime of less than 500 sentences per
task, handling OOVs is a priority. The multi-task model is used
in these experiments. The only difference between the closed
vocabulary and open vocabulary systems is that the closed vo-
cabulary system uses the traditional word embeddings and the
open vocabulary system uses the traditional word embeddings
concatenated with character-based embeddings.

Full Test Set OOV Subset
Vocabulary Closed Open Closed Open

Airbnb 74.4 72.7 54.5 58.2
Greyhound 85.2 84.4 64.2 67.0
OpenTable 89.7 88.9 68.8 68.1

United 90.8 90.6 81.8 80.7

Table 4: Comparison of F1 scores for open and closed vocabu-
lary systems on the full test set vs. the subset with OOV words.

Table 4 reports F1 scores on the test set for both the closed
and open vocabulary systems. The results differ between the
tasks, but none have an overall benefit from the open vocab-
ulary system. Looking at the subset of sentences that contain
an OOV token, the open vocabulary system delivers increased
performance on the Airbnb and Greyhound tasks. These two
are the most difficult apps out of the four and therefore had the
most room for improvement. The United app is also all lower
case and casing is an important clue for detecting proper nouns
that the open vocabulary model takes advantage of.

Looking a little deeper, in Figure 3 we show the break-
down in performance across individual slot types. Only those
slot types which occur at least one hundred times in the test
data are shown in this figure. The slot types that are above the
diagonal saw a performance improvement using the open vo-
cabulary model. The opposite is true for those that are below

the diagonal. The open vocabulary system appears to do worse
on slots that express quantities, dates and times and better on
slots with greater slot perplexity (i.e., greater variation in slot
values) like ones relating to locations. The three slots where the
open vocabulary model gave the biggest gain are the Greyhound
LeavingFrom and GoingTo slots along with the Airbnb Ameni-
ties slot. The three slots where the open vocabulary model did
the worst relative to the closed vocabulary model are the Airbnb
Price slot, along with the Greyhound DiscountType and De-
partDate slots. The Amenities slot is an example of a slot with
higher perplexity (with options related to pets, availability of a
gym, parking, fire extinguishers, proximity to attractions), and
the DiscountType is one with lower perplexity (three options
cover almost all cases). We hypothesize that the reason that the
numerical slots are better under the closed vocabulary model is
due to their relative simplicity and not an inability of the char-
acter embeddings to learn representations for numbers.

Figure 3: Comparison of performance on individual slot types.

5. Conclusions
In summary, we find that using a multi-task model with shared
embeddings gives a large reduction in the minimum amount of
data needed to train a slot-filling model for a new app. This
translates into a cost savings for deploying slot filling models
for new applications. The combination of the multi-task model
with the open vocabulary embeddings increases the generaliz-
ability of the model especially when there are OOVs in the sen-
tence. These contributions allow for scalable slot filling models.

For future work, there are some improvements that could
be made to the model such as the addition of an attentional
mechanism to help with long distance dependencies [16], use of
beam-search to improve decoding, and exploring unsupervised
adaptation as in [20].

Another item for future work is to collect additional tasks
to examine the scalability of the multi-task model beyond the
four applications that were used in this work. Due to their extra
depth, character-based methods usually require more data than
word based models [29]. Since this paper uses limited data,
the collection of additional tasks may significantly improve the
performance of the open vocabulary model.
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