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Abstract

In this paper, we investigate the Hidden Markov Model (HMM)

and the temporal Gaussian Mixture Model (GMM) systems

based on the Universal Background Model (UBM) concept to

capture temporal information of speech for Text Dependent

(TD) Speaker Verification (SV). In TD-SV, target speakers are

constrained to use only predefined fixed sentence/s during both

the enrollment and the test process. The temporal information

is therefore important in the sense of utterance verification, i.e.

whether the test utterance has the same sequence of textual con-

tent as the utterance used during the target enrollment. How-

ever, the temporal information is not considered in the classi-

cal GMM-UBM based TD-SV system. Moreover, no transcrip-

tion knowledge of the speech is required in the HMM-UBM

and temporal GMM-UBM based systems. We also study the

fusion of the HMM-UBM, the temporal GMM-UBM and the

classical GMM-UBM systems in SV. We show that the HMM-

UBM system yields better performance than the other systems

in most cases. Further, fusion of the systems improve the over-

all speaker verification performance. The results are shown in

the different tasks of the RedDots challenge 2016 database.

Index Terms: Un-supervised HMM-UBM, Temporal GMM-

UBM, Text Dependent, Speaker Verification

1. Introduction

Speaker Verification (SV) is the task of either accepting or re-

jecting a claimant (person) by using his/her voice. It is broadly

classified into two categories: Text Independent (TI) and Text

Dependent (TD). In the TI system, speakers/users can speak any

sentence to deliver a voice sample during the enrollment (train-

ing) and test phases of the system. In the case of the TD, speak-

ers/users are constrained to speak a particular sentence during

the test phase, which is pre-defined in the enrollment process.

It is well known that text dependent system provides higher ac-

curacy in speaker verification than a text independent; since the

TD system uses the same text/pass phrases during testing which

phonetically match the enrollment phrases.

In practice, real-life applications impose a constraint on the

amount/duration of data which can be used for target speaker

training and testing. Generally, it is expected that the test utter-

ance will be very short (1-2s). The performance of the speaker

verification system degrades significantly when training and test

data are very short [1, 2].

The paper reflects some results from the OCTAVE Project
(#647850), funded by the Research European Agency (REA) of the Eu-
ropean Commission, in its framework programme Horizon 2020. The
views expressed in this paper are those of the authors and do not engage
any official position of the European Commission.

In recent years, text dependent speaker verification using

short utterances has attracted a great interest in the research

community. Many techniques have been introduced in lit-

erature to improve the text dependent SV system by captur-

ing the phonetic temporal information from a speech signal in

different modeling paradigms namely, Deep Neural Network

(DNN) [3, 4], i-vector [3, 5], Hierarchical multi-Layer Acous-

tic Model (HiLAM) [6, 7], phone-dependent Hidden Markov

Model (HMM) [8, 9] and domain adaptation [10] concepts. In

[3], phonetic information is incorporated into an i-vector sys-

tem by accumulating statistics from speech with respect to a

pre-defined phonetic class-specific DNN output node. In [4],

the intermediate output of the DNN layers are used to vector-

ize characterization of speech data in TD-SV. HiLAM builds

a HMM model by concatenating the segmented utterance-wise

models adapted from the Gaussian Mixture Model- Universal

background Model (GMM-UBM) [7]. In domain adaptation

[10], the mismatch between the text independent and the text

dependent data is reduced by transforming the text-independent

data to better match the text-dependent task (using the a-priori

transcription knowledge of the text dependent data). In con-

ventional HMM based TD-SV systems [8, 9], phoneme (con-

text) dependent speaker models are built using the knowledge of

speech transcriptions. All of these techniques depend on tran-

scriptions of speech data either obtained by Automatic Speech

Recognition (ASR) [3, 4, 8, 9, 10] or from the text phrase con-

tent of the target speaker training data [6] for TD-SV.

In this paper, we investigate an un-supervised HMM-UBM

and temporal GMM-UBM based system to capture the tempo-

ral information available in the speech signal for TD-SV with-

out any knowledge of the speech transcriptions. In the first ap-

proach, a multi-state Speaker Independent (SI) HMM is built

without using any transcriptions of the speech data as label

information called HMM-UBM, where a single dummy word

(e.g. “HELLO”) is forced as the transcription to all speech data

during the HMM training. The state transition model parame-

ters of HMM [11] will capture the global speaker independent

temporal (phonetic) information available within the training

data. This information is basically not accounted in the con-

ventional GMM-UBM based text dependent speaker verifica-

tion system. Finally, Speaker Dependent (SD) HMM models

are derived from the HMM-UBM with Maximum a Posteriori

(MAP) adaptation using their corresponding training data in the

enrollment phase. In the test phase, the test utterance is forced

aligned to the claimant HMM and HMM-UBM models for log

likelihood ratio calculation. We call it the un-supervised HMM-

UBM based SV system.

In case of a temporal GMM-UBM based method, we try to

capture the target speaker specific temporal information by cal-

culating transition probability among the GMM-UBM mixture
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components using his/her training data. The transition proba-

bility between the particular two mixtures is calculated based

on the number of adjacent frames hard aligned after a (say, i)

Gaussian to other (say, j) Gaussian. In a test phase, speaker

specific transition probability among the GMM-UBM compo-

nents are incorporated during the log likelihood ratio calcula-

tion between the claimant and the GMM-UBM. We call it the

Temporal-GMM-UBM (TEP-GMM-UBM) system.

Finally, we also study the fusion of the systems in the score

domain. We show that the un-supervised HMM-UBM system

shows better speaker verification performance than the baseline

and the TEP-GMM-UBM methods for target-/imposter-wrong

types in most cases. However, fusion of the systems further

improve the performance of the speaker verification.

For the baseline, we consider the conventional GMM-UBM

based speaker verification system. We observe that straight for-

ward application [6] of the i-vector technique does not yield bet-

ter or equivalent performance compared to the classical GMM-

UBM based SV system in the RedDots challenge database (con-

sisting very short utterance). Besides, the proposed method

does not use any transcriptions of speech data, thus we restrict

ourselves to a GMM-UBM based system as the baseline.

The paper is organized as follows: Section 2 & 3 describe

the un-supervised HMM-UBM and TEP-GMM-UBM methods,

respectively. Section 4 describes the baseline system. Experi-

mental setup is presented in Section 5. Section 6 presents the

results and discussion. Finally, the paper is concluded in Sec-

tion 7.

2. Un-supervised HMM-UBM SV method

A HMM-UBM model is built using data from many non-target

speakers without any knowledge of the speech transcriptions.

So a dummy word is assigned as a (forced) transcription la-

bel (e.g. “HELLO”) for all training data during the HMM

training as shown in Fig.1. HMM-UBM is initialized with flat

start and then the parameters are re-estimated with few itera-

tions of Baum-Welch algorithm. Since we are not using any

transcriptions of the training data, state transition probabili-

ties of the HMM [11] will inherently capture/reflect the global

speaker independent temporal information available within the

data. This temporal information is not considered in the conven-

tional GMM-UBM based text dependent SV system. During the

enrollment phase, Speaker Dependent (SD) models are derived

from the HMM-UBM with MAP adaptation [12] using his/her

training data.

Training data training
HMM

Forced label

Adaptation

HMM UBM

Speaker SD HMM

file1.mfcc

file2.mfcc

filen.mfcc

training data

HMM − UBM

′′HELLO′′

Figure 1: Training of un-supervised speaker independent

HMM-UBM and speaker dependent model without any tran-

scription of speech data.

In testing, the test utterance is forced aligned against the

claimant-HMM and the HMM-UBM for Log Likelihood Ratio

(LLR) calculation as,

LLRhmm(X) =
1

T
{log p(X|qtar, λtar−hmm)

− log p(X|qhmm−ubm
, λhmm−ubm)}

where X = {x1, x2, . . . , xT } represents the feature vectors

of the test utterance. λtar−hmm and λhmm−ubm denote the

claimant and HMM-UBM, respectively. qtar and qhmm−ubm

denote the state sequence with respect to the λtar−hmm and

λhmm−ubm models, respectively for the given test data.

3. Temporal GMM-UBM SV method

In this technique, our motivation is to capture the target

speaker specific temporal information with respect to the

Gaussian components of the GMM-UBM using his/her training

data at the enrollment phase. The speaker specific temporal

information is calculated in terms of transition probabilities

among the Gaussian mixtures in the GMM-UBM. For that, the

training data of the particular target speaker is first assigned to

the Gaussian components of the GMM-UBM at the frame level

with a hard-decision (based on maximum posteriori). Then,

the transition probability between the two particular Gaussians

is calculated based on the frame count. Algorithm 1 explains

the estimation of transition probabilities with respect to the

Gaussian components of the GMM-UBM ∼ N (w, μ,Σ) for

the rth speaker training data X = {x1, x2, . . . , xT }.

Algorithm 1: Estimate transition probability

Step 1: Estimate posteriori alignment of feature vector

X with respect to the GMM-UBM

p(j|xt) =
wjbj(xt)∑M

k=1
wkbk(xt)

(1)

Step 2: Align the frames to 1-best Gaussian

k̂ = arg max
1≤ j≤ M

p(j|xt) (2)

e.g., Gaussian index of frames

{10, 1, . . .}

Step 3: Count the number of frames hard-assigned after

ith mixture to jth,

#frames (i→ j) (3)

Step 4: Calculate transition probability between i & j

mixtures,

a
r
ij =

#frames (i→ j)

T
(4)

Step 5: Repeat Step 3 to 4 for all combination of mix-

tures

Transition probabilities are calculated with respect to the

fixed sequence of Gaussian mixtures in GMM-UBM for all

speakers. Further, we only consider the left to right transition

and hence self transition probability (within the Gaussian com-

ponent) is not accounted except for the initial mixture i.e., a11.
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The likelihood calculation in this method can be defined using

Eq.(5) for a given single feature vector xt and transition prob-

ability a with respect to the GMM-UBM λubm ∼ N (w, μ,Σ),
and is illustrated in Fig.2.

p̃(xt|λubm, a) = a11w1b1(xt) +
M−1∑

i=1

aii+1wi+1bi+1(xt) (5)

1 M32

Tran. probability:

Mixtures:

w1, b1(.) w2, b2(.) w3, b3(.) wM , bM(.)

a23a12a11

a11w1b1(xt) a12w2b2(xt) a23w2b3(xt)

∑

p̃(xt|λubm, a)

Feature vector: xt

λubm parameters:

Figure 2: Illustration of likelihood calculation for a given single

feature vector xt, GMM-UBM λubm and transition probability

a in TEM-GMM-UBM technique.

We can rewrite the Eq.(5)

=
a11w1

β
b1(xt) +

M−1∑

i=1

aii+1wi+1

β
bi+1(xt) (6)

= w̃1b1(xt) +

M−1∑

i=1

w̃i+1bi+1(xt) (7)

=
M∑

i=1

w̃ibi(xt) (8)

where β = a11w1 +
∑M−1

i=1
aii+1wi+1 is a scaling factor and

Eq.(8) satisfies the GMM property
∑M

i=1
w̃i = 1. M and bi(.)

denote the number of mixtures in GMM-UBM and probability

density function of ith mixture, respectively. aij indicates the

transition probability from mixture i to j.

In the enrollment phase, the target speaker-specific model

(with MAP adaptation) and temporal information (i.e., transi-

tion probability) are estimated with respect to the GMM-UBM

using his/her training data.

In the test phase, the log likelihood ratio for the test data

X = {x1, x2, . . . , xT } is calculated between the rth claimant

model λr and GMM-UBM λgmm−ubm incorporating the tran-

sition probability ar (obtained during the training phase) as,

LLRtran(X) =
1

T

T∑

t=1

{log p̃(xt|λr, ar)

− log p̃(xt|λgmm−ubm, ar)}

It is noted that we only updated the Gaussian means of the

GMM-UBM during the MAP adaptation, and so both the

GMM-UBM and target models hold a point to point Gaussian

link.

4. Baseline system

This system is based on the conventional GMM-UBM based

speaker verification system. During training, target speaker

models are derived from the GMM-UBM with MAP adaptation

[7] using their training data.

In the test phase, the test utterance X = {x1, x2, . . . , xT }
is scored against the claimant λr and GMM-UBM λgmm−ubm

for log likelihood ratio calculation as,

LLR(X) =
1

T

T∑

t=1

{log p(xt|λr)− log p(xt|λgmm−ubm)}

Finally, LLR values are used to calculate the system perfor-

mance.

5. Experimental setup

All experiments are performed using male speakers from the

RedDots 2016 challenge database as per the evaluation plan

[13]. RedDots evaluation is focused on various aspects of text

dependent speaker systems in real-life scenarios. The evalua-

tion tasks are primarily divided into four parts based on the dif-

ferent phonetic match/mismatch conditions of the target speak-

ers training and test phase:

• part-01: training or testing sentences/texts are common

across all speakers

• part-02: each speaker has their own unique sentences

(text/pass phase) which are not common to all

• part-03: 2 free sentences (text) chosen by the individual

speaker

• part-04: free text per speaker but the text is unique

across their recording session

In brief, phonetic/lexical contents are varied among the speak-

ers for applications of the text dependent speaker verification

system in various situations. Each part is further divided into

three subtasks based on the imposter type:

• target wrong: when a target speaker speaks a wrong

sentence in the testing phase as compared to the enroll-

ment phase

• imposter correct: the imposter speaks a correct sen-

tence (same as target in the enrollment phase)

• imposter wrong: the imposter speaks a wrong sentence

(differs from target in the enrollment phase)

Each utterance in the database is very short and on average 2-3s.

For more details, see [13].

For spectral analysis, 57 dimensional MFCC (with RASTA

[14] filtering) feature vectors consisting of static C1-C19 cep-

stra, with Δ and ΔΔ coefficients are extracted from the speech

signal using 10 ms frame shift and a 20 ms Hamming window.

An energy based Voice Activity Detection (VAD) is applied to

removed the less energized frames. Then, the energized feature

vector are normalized to zero mean and unit variance at utter-

ance level.

The gender dependent HMM-UBM (14 states including

start and emitting, 8 mixtures per state) and the GMM-UBM

consisting of 96 Gaussian mixture components with diagonal

covariance matrixes are trained using data (42325 utterances)

from 157 male non-target speakers in the RSR2015 database

[15]. For TEM-GMM system, GMM-UBM consisting of 8
mixtures is considered, as larger size of GMM-UBM yields
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sparsity when estimating the transition probability based on

frame count. During MAP adaptation, only the Gaussian means

of the GMM-UBM and HMM-UBM are updated with 3 iter-

ations. The value of relevance factor considered in the MAP

is 10. HMM-UBM and GMM-UBM systems are implemented

using HTK toolkit [16].

System performance is evaluated in terms of Equal Error

Rate (EER) and Minimum Detection Cost Function (MinDCF)

as per NIST 2008 SRE plan [17].

6. Results and Discussion

Tables 1- 4 compare the Text Dependent (TD) Speaker Verifica-

tion (SV) performance of the different systems in various parts

(tasks) of the RedDots challenge 2016 for different types of im-

posters.

It is observed from Tables 1-4 that the un-supervised HMM-

UBM (total 96 mixtures) system shows lower error rate (either

in terms of EER or MinDCF) compared to the un-supervised

TEP-GMM-UBM (GMM-UBM of 8 mixtures) and baseline

(GMM-UBM of 96 mixtures) systems for target-/imposter-

wrong types in most cases. Results indicate that the HMM-

UBM system is able to capture the speaker independent tem-

poral information which is helpful to reject more better target-

/imposter-wrong in TD-SV. Moreover, the HMM-UBM system

will be also useful when needed to verify/cross-check whether

target speakers are delivering the correct pass-phrase during the

recording of their enrollment data.

The error rate (either in terms of EER or MinDCF) of the

TEP-GMM-UBM is significantly higher than the other systems.

This could be due to the fact that limited amount of training data

per target makes sparse estimation of the transition probability

among the GMM-UBM Gaussian components. However, fu-

sion of the baseline with HMM-UBM and un-supervised TEP-

GMM-UBM again reduces the EER and the MinDCF with re-

spect to the standalone baseline system in most cases. It indi-

cates that the all systems contain complementary information

for the others and is useful for TD-SV.

When combining the different systems, weighted fusion is

applied. The weights are estimated in several steps in the re-

spective task: (1) an average EER value is calculated per system

across the different non-target types (on evaluation set), (2) av-

erage EER values of the respective systems are then divided by

the summation of average EER values of all systems, (3) inter-

mediate weights of the systems are defined by reciprocal oper-

ation of output value at Step (2), and (4) finally, weights for the

systems are calculated by re-scaling the intermediate weights

obtained at Step (3), such that their summation satisfies unity.

Table 1: Comparison of speaker verification performance of the

different systems on m-part-03 task of RedDots challenge.

System Non-target type [%EER/(MinDCF× 100)]
target-wrong imposter-correct imposter-wrong

1. Baseline 4.53/2.754 0.97/0.342
2. TEP-GMM-UBM 20.22/6.045 no trials 9.35/2.901
3. Unsup. HMM-UBM 4.20/1.969 available 1.29/0.284

4. (1,2) (fusion) 4.20/2.788 0.80/0.275
5. (1,3) (fusion) 3.88/2.192 0.97/0.241
6. (1,2,3) (fusion) 3.88/2.127 0.80/0.224

We also believe that better fusion technique (parametric)

will further improve the system performance in future with

compared to our simple fusion strategy, e.g. logistic regression

fusion and support vector machine fusion [18].

Table 2: Comparison of speaker verification performance of the

different systems on m-part-04 task of RedDots challenge.

System Non-target type [%EER/(MinDCF× 100)]
target-wrong imposter-correct imposter-wrong

1. Baseline 5.89/2.564 4.19/1.890 1.52/0.480
2. TEP-GMM-UBM 21.07/7.376 14.36/5.662 9.62/3.385
3. Unsup. HMM-UBM 4.89/2.077 5.28/2.582 1.42/0.500

4. (1,2) (fusion) 6.12/2.660 3.81/1.741 1.07/0.418
5. (1,3) (fusion) 4.69/2.086 4.14/2.015 1.04/0.360
6. (1,2,3) (fusion) 4.79/2.125 3.93/1.901 0.81/0.315

Table 3: Comparison of speaker verification performance of the

different systems on m-part-01 task of RedDots challenge.

System Non-target type [%EER/MinDCF× 100]
target-wrong imposter-correct imposter-wrong

1. Baseline 5.64/2.361 4.19/1.882 1.72/0.524
2. TEP-GMM-UBM 20.54/7.106 15.15/5.721 9.34/3.569
3. Unsup. HMM-UBM 4.56/1.880 4.99/2.372 1.38/0.541

4. (1,2) (fusion) 5.73/2.454 3.91/1.723 1.06/0.454
5. (1,3) (fusion) 4.50/1.874 4.04/1.937 1.02/0.381
6. (1,2,3) (fusion) 4.54/1.864 3.86/1.851 0.79/0.341

Table 4: Comparison of speaker verification performance of the

different systems on m-part-02 task of RedDots challenge.

System Non-target type [%EER/(MinDCF× 100)]
target-wrong imposter-correct imposter-wrong

1. Baseline 6.61/2.868 1.06/0.387
2. TEP-GMM-UBM 21.14/7.562 no trials 8.86/3.032
3. Unsup. HMM-UBM 5.78/2.376 available 1.50/0.463

4. (1,2) (fusion) 7.12/2.991 1.19/0.394
5. (1,3) (fusion) 5.57/2.374 1.00/0.306
6. (1,2,3) (fusion) 5.70/2.458 0.93/0.302

7. Conclusion

In this paper, we investigated two un-supervised methods to

capture temporal information from speech in an un-supervised

manner for text dependent speaker verification. One is based

on HMM-UBM and an other is TEP-GMM-UBM. In the

HMM-UBM system, a speaker independent multi-state HMM

is trained using data from many non-target speakers without

any knowledge of speech transcriptions to capture the global

speaker independent temporal information available within the

speech. The target speaker models are then derived from the

HMM-UBM using their particular training data with MAP

adaptation. In the test phase, the test utterance is forced aligned

to the claimant HMM and HMM-UBM for calculating the log

likelihood ratio. For the TEP-GMM-UBM based technique,

the target speaker specific temporal information is captured by

estimating transition probability with respect to the Gaussian

components of the GMM-UBM using their training data. In

the test phase, the speaker specific transition probability is in-

corporated during the log likelihood calculation between the

claimant model and GMM-UBM. We showed that the HMM-

UBM system yields better performance than the baseline and

TEP-GMM-UBM systems for target-/imposter-wrong types in

most cases. This indicates that the speaker independent tempo-

ral information is useful for the text-dependent speaker verifi-

cation. However, fusion of the systems further improve the per-

formance of the speaker verification with respect to their stan-

dalone system. All results are presented in various tasks of the

RedDots challenge 2016 database.
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