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Abstract
The second English Multi-Genre Broadcast Challenge (MGB-
3) is a controlled evaluation of speech recognition and lightly
supervised alignment using BBC TV recordings. CRIM is par-
ticipating in the speech recognition part of the challenge. This
paper presents CRIM’s contributions to the MGB-3 transcrip-
tion task. This task is inherently more difficult than the first task
as the training audio has been reduced from 1200 hours to 500
hours. CRIM’s main contributions are experimentation with
bidirectional LSTM models and lattice-free MMI (LF-MMI)
trained TDNN models for acoustic modeling, LSTM and DNN
models for speech/non-speech detection for input to speaker di-
arization, and LSTM language models for rescoring lattices. We
also show that adding senone posteriors to the input of LSTM
and DNN models for speech/non-speech detection (VAD) re-
duces error rate. CRIM’s best single decoding WER for the
MGB-3 dev17 dev set (with reference segmentation) went down
from 27.6% (with our MGB-1 challenge system) to 24.1% for
this task using the LF-MMI trained TDNN models. The final
WER on dev17 set (after VAD) is 20.9%, and on the new dev18
development set is 20.8%.
Index Terms: Deep Neural Networks, DNN, change point
detection, automatic transcription, multi-genre broadcast tran-
scription.

1. Introduction
The second English Multi-Genre Broadcast Challenge (MGB-
3) is a controlled evaluation of speech recognition and lightly
supervised alignment using BBC TV recordings [1]. CRIM is
participating in the speech recognition (or transcription) part of
the challenge. In MGB-3, the acoustic training data consists of
500 hours of BBC recordings of episodes from many genres.
We only have closed captioned transcripts of these episodes.
These transcripts have been converted into lightly supervised
speech segments with word-matched error rates (WMER) or
phone-matched error rates (PMER) by the MGB-3 organizers.
The WMER and PMER are obtained by comparing the closed-
captioned text with the output of a baseline recognizer.

In MGB-1 challenge, the best results were obtained by
Cambridge University [2]. In acoustic data selection, they used
a PMER threshold to select the acoustic training data for gen-
erating acoustic models. These acoustic models were then used
to perform lightly supervised alignment one more time to gen-
erate another training set using a PMER threshold. They got
a small reduction in word error rate (WER) through this pro-
cess. In acoustic modeling, they performed joint decoding with
tandem DNN acoustic models and hybrid DNN acoustic mod-
els. They also used Kaldi [3] to generate CNN and unidirec-
tional 2-level LSTM acoustic models. In speaker segmentation,
a DNN was trained to provide accurate speech/non-speech seg-
mentation. The speech segments were then diarized and recog-

nized using various models and then followed by model combi-
nations.

We also used the WMER/PMER to select a training set. We
train bi-directional LSTM models [4] from this training data. In
the second iteration, we select a new training set as follows: we
select training set by first aligning the recognized transcript with
the closed-captioned text, then selecting only the aligned words
that have one or more phones in common (since many of the
errors correspond to similar sounding words). We also remove
aligned words that have long durations to remove matches to
long music segments.

In acoustic modeling, CRIM’s contribution is to experiment
with bidirectional LSTM [4], and LF-MMI trained TDNN mod-
els (chain models) [5]. We found that bidirectional LSTM’s and
the chain TDNN are significantly superior to other DNN acous-
tic models we tried in MGB-1 [6].

We experimented with DNNs and LSTMs for voice activity
detection (VAD) in order to improve speaker diarization. We
found that concatenating senone posteriors to the MFCC fea-
tures input to the LSTM and DNN VADs reduce the voice ac-
tivity detection errors. The best VAD results were with DNNs
with a large input context. We also show that WER for segmen-
tation with VAD is lower than that with VAD+BIC clustering.

In language modeling, besides quadgram language models,
we have also tried RNNLM and LSTM LM’s. Since LSTM
LM’s have long term memory, we have tried to decode the entire
episode with LSTM, i.e., we do not reset the LSTM after every
speaker turn, since the entire episode is semantically connected.

2. Acoustic training data selection
The acoustic training data provided by MGB challenge com-
mittee contains lightly supervised alignments based on the tran-
scripts from closed captioning. As a measure of confidence,
they also computed phone matched error rates (PMER) and
word matched error rates (WMER) [1]. In the second MGB
challenge for English, the total acoustic data available is 500
hours of audio, significantly less than the 1200 hours available
during the first MGB challenge. The mix of genres in the dev17
and dev18 sets is similar to that of the development set for the
first challenge.

There are two dev sets provided by the MGB-3 organisers:
dev17 and dev18. Dev17 was provided last year and most of
the results in this paper have been run on dev17. Dev18 was
provided recently and we have used it more as an eval set to
compare dev17 and dev18 WER.

2.1. CRIM’s acoustic training data selection approaches

In the first MGB challenge, CRIM used the different WMER
values to choose the training set [6]. In MGB-3 challenge, we
have tried many different algorithms to choose the training set.
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First, we used a PMER of 40% to choose the initial training
set. We generated 3-level bidirectional LSTM acoustic models
(with cell dimension of 1024, hidden layer dimension of 1024,
and recurrent and non-recurrent projection layer dimension of
128) from this training data. (By 3-level LSTM we mean that
3 LSTMs are stacked on top of each other, with the output of
1st LSTM going to the input of the 2nd LSTM, and the output
of the 2nd LSTM going to the input of the 3rd LSTM. This is
refered to as a deep structure.) We then re-aligned the training
data using these models and trained another set of acoustic mod-
els. The reason is that this re-alignment and retraining leads to
significant reduction in error rate. We then added more train-
ing data by using a PMER of 60% and retrained these models.
The first two lines of Table 1 show WER for the dev17 set with
reference segmentation provided by the organisers in the STM
file.

We also experimented with many other alignments to gen-
erate a reasonable training set. With either PMER or WMER,
the training set contains many spoken words that are not tran-
scribed in the closed-caption transcripts. These transcription
errors could be corrupting the models. To test this hypothe-
sis, we experimented with training sets derived from alignment
of recognized time-aligned transcripts with the corresponding
closed-captioned text. The best scenario we found is to use all
the aligned words with at least 1 phoneme in common. Recog-
nized words that do not align (insertions) are removed. Also,
aligned words with long durations are removed since many of
them happen to be music segments. Line 3 (Table 1) shows the
WER for LSTM models trained from this data (referred to as
set align. Models generated from this align training set gave
WER comparable to that for training set with PMER 60. To get
multiple transcripts for model combination, we have used two
training sets: training set with PMER60 and training set align.

Table 1: %WER on dev17 set (with reference segmentation)
with different methods of extracting the training set.

method hours of audio WER LSTM
PMER 40 279 24.9
PMER 60 314 24.7

aligned matching 330 24.8
words (set align)

3. Acoustic Models and Single Decoding
3.1. CRIM acoustic models and single decoding processes

In MGB-1 challenge, we tried two different feature parameters
and many different deep neural networks (DNNs): TRAP fea-
tures [7] and cepstral features transformed by an fMLLR trans-
form per speaker. The TRAP features gave significantly lower
WER than the fMLLR transformed cepstral features. TRAP
features gave the best results with DNNs trained from over 747
hours of audio. We recognized the MGB-3 dev set (with ref-
erence segmentation) using the best models from MGB-1. The
single decoding WER was 27.6% (see Table 2).

In order to get the best possible acoustic models, we tried
two different features (40 dim MFCC and fMLLR transformed
MFCC features) and two different topologies (bidirectional 3-
level LSTM and TDNN chain models) for acoustic modeling.
Both the bidirectional LSTM and the chain TDNN models gave
the best accuracies with the MFCC features. We did not try
the CNN models with jump connections as they require many

layers for good accuracy resulting in slow training times [8].
The TDNN chain models have 7 hidden layers, use ReLU of
size 725, and the splice indexes are: “-1,0,1 -1,0,1,2 -3,0,3 -
3,0,3 -3,0,3 -6,-3,0 0”. All the models have 100 dimensional i-
vector input [9] [10] [11]. The i-vector extractor was computed
from a subset of the training set with PMER of 40.

Table 2 shows the results with different models for decod-
ing using a small trigram language model created from the LM
data provided for MGB-3. The TDNN chain models actually
gave us a small improvement over the bidirectional LSTM mod-
els, which was an unexpected result for us. The chain TDNN
models were trained with LF-MMI followed by fine tuning
with the word-lattice based sMBR objective function [5]. Se-
quence training of bidirectional LSTM models gave worse re-
sults, so we have used only CE trained LSTM models. Both
the bidirectional LSTM (24.7% WER) and TDNN chain model
(24.1% WER) gave lower WER than our best DNN models
trained from 747 hours of audio in MGB-1 (27.6% WER). We
trained LSTM models with both 1-frame MFCC input and with
5-frame MFCC input. The 5-frame input LSTM model gave
lower WER.

Table 2: WER on the dev17 set (with reference segmentation)
for DNNs with i-vector input.

MGB-1 best model 27.6%
3-level LSTM 1-frame input 25.9%
3-level LSTM 5-frame input 24.7%

chain TDNN 24.1%

4. Voice activity detection and speaker
clustering

In the previous section, we gave all the results on dev17 de-
velopment set based on reference segmentation provided in the
STM file. In this section, we show results with automatic seg-
mentation of the dev17 and dev18 development sets. We already
have an in-house speaker diarization system that was trained on
English broadcast news data with algorithms similar to that for
the French diarization system [12]. Even though we cannot use
it for official results, we tried it as a benchmark for voice activity
detection (VAD). For voice activity detection with this system
for dev17, we got 17.4% error rate. The high VAD error rate
implies that we need to train the VAD system with the MGB-3
training data.

Cambridge University had successfully used DNN-based
VAD for MGB-1 challenge [2]. To reduce VAD errors (false
alarms + missed speech), we tried two different architectures
for neural net based VAD: DNN architecture similar to that used
in [2] with varying number of input frames, and a bidirectional
LSTM with 1 to 3 levels. We also tried two different feature
parameters: 40-dim MFCCs, and 40-dim MFCCs with senone
posteriors added to them. The senone posteriors were gener-
ated from a bidirectional LSTM with 178 senones as outputs.
To train these VAD DNN models, we generated three differ-
ent training sets. In the first training set (set0), we aligned all
the speech segments with zero PMER. The segments aligned
to words were labeled as speech and the rest as non-speech.
This resulted in 20 million speech frames and only 2 million
non-speech frames. The resulting 3-level LSTM gave over 30%
VAD error on dev17 due to many music and noise segments be-
ing recognized as speech. So we needed to add many more non-

2654



speech frames for training in order to balance the speech/non-
speech discrimination.

We noticed in the training data with lightly aligned super-
vision that intervals between speech segments with closed cap-
tioning were mostly silence or music. So we added all such
segments as non-speech. Including all these frames increased
the non-speech frames to 31 million frames, 1.5 times the num-
ber of speech frames. We trained DNN from two different
training sets: set1: 20 million speech, 20 million non-speech
frames, set2: 20 million speech, 31 million non-speech frames.
set0 is 20 million speech, 2 million non-speech frames. We
trained a DNN with 55-frame MFCC features as input, 5 hid-
den layers, with 2000, 500, 500, 500, and 200 output nodes
respectively. The softmax layer has 2 outputs (speech/non-
speech). We also trained 1-level and 3-level LSTM models for
speech/non-speech discrimination.

Speech/non-speech detection using the DNN/LSTM is as
follows: We first label each frame as speech or non-speech
based on DNN/LSTM posterior likelihoods. Consecutive
speech frames are merged into one segment. Segments with
less than 0.3 sec silence in between are merged. Isolated seg-
ments less than 0.2 secs are discarded. The results with various
training sets and with different DNNs are shown in Table 3.

Table 3: VAD error rates (false alarm + missed speech) for
MGB-3 dev17 set with different DNN training sets and DNN
architectures.

training set DNN/LSTM % VAD error
set0 3-level LSTM 5-frame input 34.1%
set2 3-level LSTM 5-frame input 14.7%
set1 3-level LSTM 1-frame input 12.1%
set1 1-level LSTM 1-frame input 12.1%
set1 DNN 55-frame input 7.1%
set2 DNN 55-frame input 7.1%
set2 DNN 81-frame input 6.6%

MGB VAD 7.1%

We also compared MFCC features versus MFCC + senone
posteriors as input features. For LSTM models, we concate-
nated 40-dim MFCCs with 178-dim senone posteriors. For
DNNs, we concatenated 81-frames of 40-dim MFCCs with the
178 senone posteriors of the center frame. The results on dev17
are shown in Table 4.

Table 4: VAD error rates (false alarm + missed speech) for
MGB-3 dev17 set with different input features and DNN archi-
tectures trained with set2.

input features DNN/LSTM % VAD error
1-frame MFCC 1-level LSTM 12.1%

1-frame MFCC + 1-level LSTM 10.3%
senone posteriors

81-frames of MFCC DNN 6.6%
81-frames of MFCC + DNN 6.2%

center-frame
senone posteriors

The lowest VAD error is obtained with the DNN with 81-
frames of 40-dim MFCCs and 178 senone posteriors of the cen-
ter frame as input. The LSTMs probably did not do as well
as DNNs because their effective memory may be less than 50

frames. We also tried using joint decision by combining like-
lihoods from different DNNs, but the overall gains were only
small. The senone posteriors had a smaller impact with DNNs
probably because we input only posteriors corresponding to the
center frame.

We used the speech segments found by VAD for speaker
diarization as follows: Each segment was first sub-divided into
homogeneous segments by a change point detection algorithm.
These segments were then revised using a Viterbi re-alignment.
These Viterbi re-aligned segments were then clustered into sim-
ilar segments using BIC clustering [13]. The clustered segments
were then modified using Viterbi re-alignment (see [12] for de-
tails of the change point detection, Viterbi alignment and BIC
clustering). These segments were then used for decoding (in-
stead of reference segments from STM file). The segmentation
after VAD only gave lower WER than segmentation after VAD
+ BIC clustering, even though BIC clustering reduced the diari-
sation error rate (DER). For example, in one case, the WER for
dev17 went down from 29.3% (with BIC clustering) to 28.5%
(VAD only).

For dev17 and dev18 development sets we generated 2 sets
of segments: one by DNN VAD with only 81-frames of MFCCs
as input (VAD-MFCC) and the other by DNN VAD with 81-
frames of MFCCs and senone posteriors of the center frame
as input (VAD-MFCC-SENONE). We were also provided with
dev17 segmentation in the dev17 XML files provided by the or-
ganisers (referred to as MGB VAD). So all together we have
3 different segmentations for dev17 and 2 different segmenta-
tions for dev18. The comparative decoding error is shown in
Table 5 for the 3 different segmentations for dev17 develop-
ment set. We see that there is 11.7% absolute difference be-
tween decoding without segmentation and segmentation pro-
vided by VAD-MFCC-SENONE (compare first line with the
4th line in Table 5). The small variations in the different DNN
VADs we have used cause only a small difference in WER. Ba-
sically, we gain approximately 0.2% absolute WER compared
to MGB VAD. All the results are for first pass decoding with
a small trigram language model. The acoustic model used is a
3-level bi-directional LSTM with 5-frame input (line 3 in Table
2).

Table 5: WER for MGB-3 dev17 set with different VAD
schemes.

VAD % WER
No VAD / no diarization 39.9%

MGB VAD 28.4%
VAD-MFCC 28.5%

VAD-MFCC-SENONE 28.2%

5. Language Models
Language models were trained on provided, normalized BBC
subtitles representing 646M word tokens. The normalization is
described in [14]. The hand-transcribed dev17 development set
from the transcription task was used for interpolation weight
tuning and perplexity evaluation. The dev17 contained 61900
word tokens after removing comments, vocal noises and post-
processing acronyms. First, trigram and quadgram language
models were trained on all this data, with modified Kneser-Ney
smoothing, and limiting the vocabulary to the 160,000 word set
provided by the MGB Challenge organisers. Their respective
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perplexities were 127 and 116 on the development set (2 first
lines of Table 7). The quadgram LM was slightly pruned to
24.8 M 3-grams and 57.72 M 4-grams. The trigram was more
heavily pruned to 2.52 M 3-grams and 3.16 M 2-grams.

The results with quadgram rescoring followed by RNNLM
rescoring are shown in Table 6 for our best chain TDNN models.
The RNNLM rescoring uses N-best rescoring with N = 200.

Table 6: WER for MGB-3 dev17 and dev18 sets with differ-
ent VAD schemes followed by trigram decoding, quadgram (4-
gram) rescoring and RNNLM rescoring.

VAD trigram 4-gram RNNLM
search rescore rescore

dev17 MGB VAD 27.1% 24.7% 23.9%
dev17 VAD-MFCC 27.4% 25.0% 24.4%

dev17 vad-mfcc-senone 27.4% 25.2% 24.7%
dev18 VAD-MFCC 27.9% 23.8% 23.5%

dev18 vad-mfcc-senone 27.5% 23.5% 23.0%

In MGB-1 challenge, we generated quadgram LM for each
genre, and matched the LM with the genre of the audio file for
decoding. However, [15] gives very good perplexities with large
LSTM topologies, and the group with the best results in Chime4
evaluation [16] showed impressive WER reduction with LSTM
LM (even though they do not give any detail about architec-
ture, training process or use in rescoring). This prompted us to
explore RNN and LSTM language models and various combi-
nations in rescoring lattices.

In Table 7, RNN is a maximum-entropy recurrent network
[17] with a 64K words vocabulary, hidden layer size 300, with
400 classes and direct connection hash size of 2 × 109. The
LSTM has a vocabulary of 100K words and 2 hidden layers of
size 800. Both NN LMs were trained with one half of the full
training set. For LSTM training, we kept together blocks of 10
consecutive sentences to preserve across-sentence context dur-
ing shuffling; in that case, increasing the number of unrolling
steps in a minibatch from 20 to 40 provides an improvement
(lines 5-6 of Table 7). We found that the histogram of utterance
length peaks at a length of 7 words for training text (closed-
captioning) and at less than 2 words for the dev17 development
text (manual segmentation), a mismatch that may explain why
the observed improvement is not as large as expected. We are
currently investigating a modification of lattice rescoring which
will not reset the LM state at the beginning of each utterance.

Table 8 show the results after rescoring lattices produced
when decoding with the pruned trigram. Note that for this ta-
ble, decoding was based on the manual reference segmentation
rather than VAD. In each rescoring, the current LM scores in
the lattice and the new LM scores are given equal weight. The
best result is obtained when rescoring first with quadgram, then
with RNN followed by LSTM.

6. Merging Decoded Lattices and CTM files
We tried different ways of merging results in order to reduce
word error rate (WER). One way is to combine the lattices from
different decodes and to carry out MBR decoding (or 1-best
decoding) over the combined lattices. Merging lattices followed
by MBR decoding always increased the WER.

Another way is to combine two lattices by lattice interpo-
lation followed by MBR decoding or 1-best decoding. This
lattice interpolation reduces WER. We interpolated lattices for

Table 7: Train, validation and dev17 development set perplexi-
ties.

LM Condition train ppl dev17 ppl
3g Kneser-Ney 87 127
4g Kneser-Ney 61 116

RNN iters=3 57 108
RNN iters=6 50 99

LSTM ns=20 85 109
LSTM ns=40 79 102

Table 8: WER after rescoring MGB-3 dev17 set lattices from
chain TDNN models with various LMs (reference segmenta-
tion).

None RNN LSTM 4g
24.1% 21.7% 21.8% 21.5%

4g+RNN 4g+RNN+LSTM
20.7% 20.6%

each variation of the dev17 set (MGB vad, VAD-MFCC, VAD-
MFCC-SENONE) with all the models. We have two chain
models and two LSTM models corresponding to training sets
PMER60 and align. For example, interpolation of the two lat-
tices from the two chain models for dev17 MGB vad dataset
results in one combined lattice. These combined lattices reduce
the WER from 0.3% to 0.9% absolute. We have 6 such com-
bined lattices for dev17 (3 for lattices from chain models and
3 for LSTM models). When we combine the resulting 6 ctm
files using ROVER [18], we get 21.8% WER for dev17. How-
ever, combining using ROVER the 12 ctm files from individual
decodes (3 data sets X 4 models) results in 21.1% WER. If we
also include in ROVER the 3 ctm files from the lattice combina-
tion for the chain models (15 ctm files altogether), then we get
20.9% WER. Best chain model WER is 23.9%.

For dev18 also, the results were consistent. For dev18,
we have 8 ctm files (2 datasets X 4 models). Combining with
ROVER ctm files from these 8 decodes gives 20.9% WER, and
adding the 2 ctm files from lattice interpolation using the chain
models gives 20.8% WER. Best chain model WER is 23.0%

7. Conclusion
The best result we obtain is less than 21% WER over all the
shows for both the dev17 and dev18 development sets. This
WER is quite good considering the fact that the shows include
singing, noisy talk shows, children’s shows and a lot of audi-
ence noise and music. A number of improvements have lead
to these results. We found that bidirectional LSTM’s and chain
TDNNs are significantly superior to other DNN acoustic mod-
els we tried in MGB-1, even when trained with half the data.
The DNN-based voice activity detection for speech/non-speech
discrimination reduced the WER from 39.9% to 28.2%. Voice
activity detection (VAD) using both MFCCs and senone pos-
teriors as input reduces VAD errors. Segmentation after VAD
give lower WER than after VAD + BIC clustering. ROVER of
individual ctm files from different recognizers (different mod-
els and different VADs) results in lower WER than combining
lattices using lattice interpolation first and then using ROVER.
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