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Abstract 

This paper explores speaking rate variation in Mandarin read 

speech. In contrast to assuming that each utterance is generated 

in a constant or global speaking rate, this study seeks to estimate 

local speaking rate for each prosodic unit in an utterance. The 

exploration is based on the existing speaking rate-dependent 

hierarchical prosodic model (SR-HPM). The main idea is to 

first use the SR-HPM to explore the prosodic structures of 

utterances and extract the prosodic units. Then, local speaking 

rate is estimated for each prosodic unit (prosodic phrase in this 

study). Some major influence factors including tone, base 

syllable type, prosodic structure, and speaking rate of the higher 

prosodic units (utterance and BG/PG) are compensated in the 

local SR estimation. A syntactic-local SR model is constructed 

and use in the prosody generation of Mandarin TTS. 

Experimental results on a large read speech corpus generated 

by a professional female announcer showed that the generated 

prosody with local speaking rate variations is proved to be more 

vivid than the one with a constant speaking rate. 

Index Terms: speaking rate, SR-HPM, speech rate, articulation 

rate, prosody, text-to-speech, Mandarin 

1. Introduction 

Modeling speaking rate (SR) is useful for many speech 

applications, such as automatic speech recognition (ASR), 

emotion recognition, and text-to-speech system (TTS). For TTS, 

generating speech in a user-defined or controllable SR makes 

the synthesized speech more vivid and suitable for various 

applications, e.g., fast speech for visually-impaired people and 

slow speech for language learners. Many SR-modeling methods 

for TTS were proposed in the past including proportional 

duration adjustment [9], interpolation of models in various SRs 

[10-12], explicit modeling of SR effect on prosodic features 

[13-20,24,25], and so on. 

SR is conventionally defined as words, syllables or phones 

per second. It is usually measured on an utterance. Since the 

duration of a pronunciation unit (word or syllable) is influenced 

by many factors, such as phonetic structure, position in sentence, 

speaker’s intention, SR can only be measured reliably for long 

utterances. But, humans can change their speaking rate as they 

wish in their speech. So, the utterance-based SR measure cannot 

always reflect the real SR of speech. 

In this paper, the estimation of local inverse SR (ISR) in an 

utterance for Mandarin speech is addressed. Here, ISR is 

defined as the averaged syllable duration. The reason of using 

ISR is owing to its convenience to serve as a prosodic feature 

in TTS application. A prosodic phrase (PPh)-based SR 

estimation method for TTS is proposed in the study. PPh is 

adopted here as the segment units for ISR estimation because 

of their proper sizes. Syllable (SYL) and prosodic word (PW) 

are too short to avoid granular noise in ISR estimation, while 

breath group/prosodic phrase group (BG/PG) is too long to 

show local variations of ISR. The method is based on an 

existing SR-HPM prosody modeling method [16] proposed 

previously. The basic idea of the method is to apply the SR-

HPM prosody modeling method to analyze all utterances of a 

large training corpus to extract their prosodic structures, and 

then estimate the ISRs of all prosodic phrases. The SR-HPM 

model is then refined using the estimated PPh ISR. A syntactic-

PPh ISR model is then build and used in accompanying with 

the refined SR-HPM to generate prosodic features for TTS. 

The contributions of this paper include: 1) A new local ISR 

estimation method is proposed; 2) A syntactic-local ISR model 

is built to determine local ISRs that are dependent on positions 

of prosodic units in a hierarchical prosodic structure; 3) We 

demonstrate the generation of speech prosody in a way of 

variable ISR. 

The paper is organized as follows. Section 2 presents an 

overview of the research: a PPh-based ISR estimation method 

and its application to TTS. Section 3 discusses the PPh-based 

ISR estimation method in detail. Section 4 describes the 

experimental results on a large read-speech corpus. An analysis 

of the estimated PPh ISRs is discussed. Some conclusions are 

given in the last section. 

2. Research Overview 

Fig. 1 shows a block diagram of the proposed method of 

local ISR estimation and its application to the prosody 

generation of Mandarin TTS. The system comprises two phases: 

training and synthesis. In the training phase, the SR-HPM 

modeling method is firstly employed to build an SR-HPM 

model from a large training speech corpus with the utterance-

based ISR being taken as an independent variable. Meanwhile, 

all utterances of the corpus are labeled with break and prosodic 

state tags. A four-layer prosodic structure for each utterance is 

implicitly constructed by its break tags. The prosodic structure, 

as shown in Fig. 2, is formed by four prosodic constituents: 

syllable (SYL), prosodic word (PW), prosodic phrase (PPh), 

and breath group or prosodic phrase group (BG/PG). Then, a 

maximum a posteriori (MAP)-based method is proposed to 

estimate the SRs of all PPhs of the corpus. A neural network 

(NN)-based syntactic-PPh ISR model is then built to describe 

the relation of PPh’s SRs and contextual linguistic features. 

Besides, the SR-HPM model is re-trained using prosodic-

acoustic features normalized by the estimated PPh SRs. In the 

synthesis phase, the break and prosodic state tags of the input 

text are firstly predicted by using the re-fined SR-HPM and the 

given utterance-based ISR. The ISRs of all PPhs are then 

estimated by the syntactic-PPh ISR model. Then, SR-

normalized prosodic features are generated by using the re-
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fined SR-HPM and lastly denormalized by using the estimated 

PPh ISRs. 

 

Fig. 1: A block diagram of the system using the proposed PPh 

ISR estimation method in the prosody generation of Mandarin 

TTS 

In the following, we describe the proposed system in more 

detail. As shown in Fig.1, the system comprises five steps: 

1. Training of the baseline SR-HPM and labeling the corpus 

2. Estimation of local SR 

3. Modeling of local SR for prosody generation in TTS 

4. Re-estimation of SR-HPM 

5. Prosody generation by using re-trained SR-HPM and the 

predicted local SR 

The first step is to train the baseline SR-HPM and label all 

utterances with break and prosodic state tags. It first obtains the 

SR-normalized prosodic-acoustic features (PAFs) A  to 

suppress the effect of SR on the observed PAFs A by using the 

associated linguistic features L, utterance-based ISRs x, and the 

trained normalization functions (NFs). Then, a joint prosody 

labeling and modeling (PLM) algorithm is applied to 

simultaneously construct the SR-HPM containing five prosodic 

sub-models and label all utterances with the prosodic tags 

T={B,P} representing the prosodic structures of utterances. The 

tag B is the break type sequence formed by seven break types 

{B0, B1, B2-1, B2-2, B2-3, B3, B4} used to delimit an utterance 

into four types of layered prosodic constituents as shown in 

Figure 2: syllable (SYL), prosodic word (PW), prosodic phrase 

(PPh), and breath/prosodic phrase group (BG/PG) [20,22]. The 

tag set P={p,q,r} comprises three prosodic state sequences 

representing the states of the current syllable in higher-level 

prosodic constituent patterns for syllable pitch contour, syllable 

duration and syllable energy level, respectively [20]. Notice 

that the prosodic state patterns of these four prosodic 

constituents carry low- to high-level prosodic structure 

information. We therefore use prosodic states to deal with the 

influences of prosodic structure in our local ISR estimation. 

 
Fig. 2: Four-layer hierarchical Chinese prosodic structure [20] 

The second step estimates the PPh ISRs, i.e., x̂ , based on 

the assumption that each PPh is uttered in a constant SR which 

deviates closely from the SR of the intermediate upper-layer 

prosodic unit, i.e., BG/PG. Intuitively, we can estimate the SR 

of each PPh simply by averaging durations of all syllables in 

the PPh. However, the sample size of syllable duration will be 

small, in general, to result in poor ISR estimation. We therefore 

proposed a hierarchical MAP estimation approach to estimate 

local ISRs sequentially from top to lower prosodic layers to 

ensure that the ISR of a prosodic unit does not differ too much 

from the ISR of prosodic unit in its immediate upper layer. The 

proposed method also considers the information of tone, base 

syllable type and prosodic structure, which are provided by the 

baseline SR-HPM, to suppress the estimation bias. Specifically, 

we first estimate ISR of the k-th utterance, i.e., xk. Then, the ISR 

of the l-th BG/PG in the k-th utterance, i.e., xk,l, is estimated by 

the MAP method with a Gaussian prior in which the prior mean 

is set to be xk. Last, the ISR of the m-th PPh in the l-th BG/PG 

and the k-th utterance, i.e., xk,l,m, is estimated based on the prior 

mean xk,l. 

The third step analyzes the estimated local ISRs x̂  via 

exploring their patterns for different sizes of prosodic units, for 

different locations of BG/PG in an utterance, and for different 

locations of PPh within a BG/PPh, respectively. The 

exploration is powered by a neural net-based regression 

mechanism which also can serve as a local ISR predictor for the 

prosody generation in the TTS application. 

The fourth step re-trains the SR-HPM with the estimated 

local ISRs x̂ . Note that the NFs for suppressing SR effects on 

PAFs are re-trained and applied for each local prosodic unit, i.e. 

PPh. The sub-models are also re-trained with the local ISR. 

The last step is to generate prosodic features for TTS. The 

break and prosodic state tags of the input text are firstly 

predicted by using the re-fined SR-HPM and the given 

utterance-based ISR. The ISR of all PPhs are then estimated by 

the syntactic-PPh ISR model. Then, SR-normalized prosodic 

features are generated by using the re-fined SR-HPM and lastly 

denormalized by using these predicted PPh ISRs. 

3. Estimation of Local Speaking Rate 

The estimation of local speaking rate is conducted in a 

hierarchical MAP fashion. We first refine the utterance-based 

ISR xk by the hidden ISR estimation method proposed in the 

previous study [23]. Then, the local ISRs of the BG/PGs and 

PPhs are sequentially estimated as described in the second step 

of Section 2. Specifically, the estimation of the ISR for the l-th 

BG/PG of the k-th utterance is formulated by 

arg max ( | , , , ) arg max ( | , , , ) ( )
x x

x p x p x p x sd t s B sd t s B  (1)
 

where x is the local speaking rate to be estimated for the l-th 

BG/PG of the k-th utterance; 1~{ }n n Nsd sd , 1~{ }n n Nt t , 

1~{ }n n Ns s and 1~{ }n n NB B  are sequences of syllable 

duration, tone, base syllable type and break type, respectively; 

n is the syllable index; N is the number of syllables of the 

BG/PG. The probability ( | , , , )p xsd t s B  is the likelihood 

function describing the distribution of sd given information of 

x, t, s, and prosodic structure represented by the break type 

sequence B. The prior probability ( )p x  is modeled by a normal 

distribution, i.e., ~ ( , )
kk xx N x v . In the likelihood function, we 

consider several affecting factors that influence the variation of 

syllable duration, including tone, base-syllable type, SR, and 

prosodic state. Following the definition in our previous studies, 

prosodic state is conceptually defined as the state in a prosodic 

phrase and accounts for prosodic variation resulted from the 
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prosodic structure which is represented by the break type 

sequence. Then, the affecting patterns (APs) associated with the 

above-mentioned affecting factors are defined to control the 

increase or decrease of syllable duration. Based on the 

assumption that these APs are combined additively, the syllable 

duration is expressed by 

=
n n nn n t s qsd sd x                              (2) 

where 
nt

 , 
ns , 

nq  are APs of tone (tn), base syllable type (sn) 

and prosodic state (qn); and nsd   is the residual modeled by a 

zero-mean normal distribution. Notice that the prosodic state is 

absent in the likelihood function and hence treated as a latent 

variable which is dependent on the break type sequence. We 

therefore introduce the expectation-maximization (EM) 

algorithm to solve the problem in Eq. (1) based on the MAP 

criterion, i.e., 

 arg max ( | , , , , ) ln ( | , , , , ) ( )
x

x p x p x p x q
q sd t s B sd q t s B   (3) 

where ( | , , , , )p xq sd t s B is the a posterior probability of the 

prosodic state; x  is the old estimate of ISR; ( | , , , , )p xsd q t s B

is the new likelihood function which is elaborated with the 

additive property shown in Eq. (3): 

1

1

( | , , , , ) ( | , , , ) ( | , , , )

( | , )
n n n

N

n n n nn

N

n t s qn

p x p x p sd q x t s

N sd x v  





 

   





sd q t s B sd q t s

(4) 

For simplicity, the posterior probability is approximated by 

assuming that the prosodic state depends only on the break type 

sequence which specifies the prosodic structure, i.e. 

1
( | , , , , ) ( | )= ( | )

N

nn
p x p p q


  q sd t s B q B B          (5) 

The probability ( | )np q B  can be estimated by the forward-

backward calculation with the probability 1 1( | , , )n n n np q q B B  . 

Note that the APs of 
nt

 , 
ns  and 

nq  , and the probability 

1 1( | , , )n n n np q q B B   can be obtained after the baseline SR-

HPM is trained in the second step with break and prosodic state 

sequences being labeled. 

4. Analysis on Local Speaking Rate 

4.1. Experimental Database 

The database for examining the proposed ISR estimation is 

the same one as used in our previous study [16] - a female 

Mandarin read-speech corpus comprising four parallel sub-

corpora of fast, normal, medium, and slow SRs. The texts of all 

utterances in these four parallel sub-corpora are short 

paragraphs which are excerpted from news and articles. The 

maximum and minimum lengths of these utterances are 270 and 

80 syllables, and the average length is 138 syllables. The 

database is divided into a training set with 183,795 syllables for 

SR-HPM training and a test set with 19,951 syllables for 

prosody generation experiment. 

4.2. Analysis by Synthesis 

An analysis-by-synthesis method is adopted here to explore 

the local ISR patterns of BG/PGs and PPhs. First, we analyze 

the patterns of BG/PGs in an utterance, i.e., xk,l, by a neural net-

based regression mechanism. The neural net is in a structure of 

one hidden layer with hyperbolic tangent activation and the 

output layer with one node that represents the local ISR of 

BG/PG (xk,l). The input feature vector is composed of the 

utterance-based ISR (ISR_Utt), number of syllables in the 

utterance (#S_Utt), number of BG/PGs in the utterance 

(#B_Utt), number of syllables in the current BG/PG (#S_B), 

and the normalized BG/PG forward position index (Pos_B) 

defined as (l-1)/(L-1), where L represents the number of 

BG/PGs in the utterance. 

Then, we perform the neural net-based regression to 

analyze the patterns of PPh ISRs in an utterance. The input 

features used in the neural net include the ones used in the 

neural net for analyzing the ISR patterns of BG/PG, the number 

of PPhs in the current BG/PG (#P_B), the number of syllables 

in the current PPh (#S_P), and the normalized PPh forward 

position index (Pos_P).  

Table 1 shows the average total residual errors (TREs) 

resulted from using various input feature combinations. For 

BG/PG ISR patterns, the average TREs for the feature 

combinations comprising the lengths of utterance and/or 

BG/PG are generally lower than the ones without length 

features. The TREs for PPh are better than those of BG/PG. 

Table 2 shows the statistics of the lengths for various prosodic 

constituents. As shown in the table that the average number of 

syllables in a PPh (BG/PG) is 9.4 (22.3) for fast speech, and 

decreases to 7.5 (13.9) for slow speech. 

Table 1: Average total residual errors 

 ISR_Utt 

#B_Utt 

Pos_B 

#S_Utt #S_B 
#P_B  

Pos_P 
#S_P 

TREs 

Training

/Test 

BG/PG 

NN 

v     1.09/1.20 

v v    1.12/1.24 

v  v   1.14/1.18 

v v v   1.02/1.14 

PPh 

NN 

v v v v  0.93/0.98 

v v v v v 0.89/0.94 

 

Table 2: Statistics of the lengths of various prosodic units 

Prosodic 

unit 

Length 

unit 

fast 

 

normal medium slow 

utterance SYL 137.7 137.9 138.0 137.7 

BG/PG 6.2 7.1 7.1 9.9 

PPh 14.8 15.8 15.9 18.4 

BG/PG SYL 22.3 19.5 19.4 13.9 

PPh 2.4 2.2 2.2 1.9 

PPh SYL 9.4 8.8 8.7 7.5 

 

Fig. 3 shows typical patterns of BG/PG and PPh ISR 

estimates for an utterance spoken in four representative 

utterance-based ISRs of 0.173 (fast), 0.186 (normal), 0.207 

(medium) and 0.217 (slow) seconds/syllable. It can be found 

from the figure that the BG/PG-based ISRs deviate closely 

around the utterance-based ISR. For each BG/PG-based ISR, 

PPh-based ISRs distribute closely around it in fast to slow 

patterns for most cases. 
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Fig. 3: Typical local ISR patterns for an utterance spoken in 

utterance-based ISRs of 0.173 (fast), 0.186 (normal), 0.207 

(medium), and 0.217 (slow) seconds/syllable. 

5. Application to Prosody Generation 

We conduct several prosody generation experiments to 

verify that the estimated local ISRs are meaningful and could 

accurately describe the speaker’s speaking rate variations. We 

design two experiments: an oracle one and a real one. The 

oracle prosody generation experiment produces the synthesized 

PAFs given with the correct break tags labeled by the trained 

SR-HPM and the estimated local ISR by the method presented 

in Section 3. The real prosody generation experiment is 

conducted in a real TTS application scenario to produce the 

PAFs by using the refined SR-HPM and the local ISR predictor 

given with the correct utterance-based ISR. 

The purpose of the oracle experiment is to examine if the 

estimated local ISR could accurately model the prosodic 

variations in terms of the objective measures. The objective 

measures used here are the root-mean-square error (RMSE) and 

the correlation coefficients calculated with the true and 

generated PAFs. We compare the performances of the 

utterance-based, BG/PG-based and the PPh-based ISR 

estimations, and the associated estimation methods: RAW, EM, 

and EM-MAP. The RAW method is to simply estimate the ISR 

by averaging syllable durations of a prosodic unit. The EM-

MAP method estimates the local ISR by Eq. (3), while the EM 

method estimates the local ISR by Eq. (3) without the prior 

probability p(x). It can be seen from Table 3(a) that the 

proposed PPh-based ISR estimation with EM-MAP yielded the 

lowest RMSEs for sd and sp, and the highest correlation 

coefficient for sd. The performances for se and pd are degraded 

in the cases of the BG/PG-based and PPh-based estimations. In 

general, the lowest RMSE and the highest correlation 

coefficient are achieved by the EM-MAP estimation method, 

followed by the EM and RAW estimation methods. 

Table 3(b) shows the RMSE and correlation coefficient 

between the PAFs generated by the real prosody generation 

experiments and the true PAFs. We compare the results by the 

three configurations of real pro: UTT-based RAW, UTT-based 

EM, and PPh-based EM-MAP. The results by the UTT-based 

RAW configuration are obtained by the PAFs generated by the 

baseline SR-HPM with linguistic features and utterance-based 

raw ISR. The UTT-based EM results are obtained by the PAFs 

generates by the re-trained SR-HPM with linguistic features 

and the utterance-based EM-estimated ISR. The PPh-based 

EM-MAP results are obtained by the re-trained SR-HPM with 

linguistic features and PPh ISR predicted by the local ISR 

predictor. As shown in the table that PPh-based EM-MAP has 

the best performance.  

An informal listening test confirmed that the synthesized 

speech of the new method using PPh-based ISR estimates is 

more vivid than that of the existing SR-HPM method using a 

given utterance-based ISR. 

Table 3: RMSEs and correlation coefficients between the 

predicted and true PAFs under the conditions of (a) with 

correct break and correct local ISR, and (b) with predicted 

break and predicted local ISR. 

(a) 
UTT-baseda BG/PG-basedb PPh-basedc 

RAWd EMe RAW EM EM-
MAPf RAW EM EM-

MAP 

RMSE 

sdg 48.2 47.7 47.7 48.3 47.2 48.0 46.2 45.4 
sph .1472 .1467 .1650 .1469 .1469 .1472 .1465 .1463 
sei 3.54 3.53 3.56 3.56 3.52 3.57 3.55 3.56 
pdj 55.2 55.2 58.2 56.8 55.5 61.9 60.6 59.6 

CORk 

sd .779 .784 .783 .784 .790 .786 .802 .810 

spl 

.776 

.815 

.631 

.524 

.776 

.814 

.631 

.524 

.775 

.815 

.634 

.524 

.774 

.815 

.631 

.524 

.776 

.816 

.632 

.527 

.773 

.815 

.633 

.526 

.780 

.815 

.633 

.525 

.779 

.816 

.632 

.527 
se .887 .888 .887 .887 .890 .887 .887 .887 
pd .954 .954 .948 .951 .954 .941 .943 .945 

 

(b) RMSE COR 
 sd sp se pd sd spm se pd 

UTT-based 
RAW 49.1 .1597 3.63 88.2 .770 [.727 .774 .

600 .494] 
.881 .881 

UTT-based 
EM 48.8 .1580 3.63 87.4 .773 [.731 .773 .

602 .501] 
.882 .881 

PPh-based 
EM-MAP 48.0 .1578 3.63 87.6 .783 [.734 .775 .

602 .498] 
.883 .880 

 

aUTT-based: SR-HPM with utterance-based hidden ISR. 
bBG/PG-based: SR-HPM trained with BG/PG-based ISR. 

cPPh-based: SR-HPM trained with PPh-based ISR. 

dRAW: Raw ISR obtained by simply averaging syllable duration. 
eEM: ISR estimated with EM algorithm. 

fEM-MAP: ISR estimated by the EM algorithm with MAP criterion. 

gsd: second, hsp: logHz, ise: dB, jpd: second 
kCOR: correlation coefficient 

lsp: CORs of four-dimensional logF0 contour 

6. Conclusions 

A new local speaking rate method has been discussed in this 

paper. It is based on the four-layer prosodic structure proposed 

previously to explore the local speaking rate variations on high-

level prosodic constituents of BG/PG and PPh. Experimental 

results showed that the PPh-based speaking rate estimates 

distribute closely around the utterance-based speaking rate. As 

applying the proposed method to Mandarin TTS, more vivid 

synthesized speech can be obtained. 
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