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Abstract
Spontaneous conversations in real-world settings such as those
found in child-centered recordings have been shown to be
amongst the most challenging audio files to process. Neverthe-
less, building speech processing models handling such a wide
variety of conditions would be particularly useful for language
acquisition studies in which researchers are interested in the
quantity and quality of the speech that children hear and pro-
duce, as well as for early diagnosis and measuring effects of
remediation. In this paper, we present our approach to design-
ing an open-source neural network to classify audio segments
into vocalizations produced by the child wearing the record-
ing device, vocalizations produced by other children, adult male
speech, and adult female speech. To this end, we gathered di-
verse child-centered corpora which sums up to a total of 260
hours of recordings and covers 10 languages. Our model can be
used as input for downstream tasks such as estimating the num-
ber of words produced by adult speakers, or the number of lin-
guistic units produced by children. Our architecture combines
SincNet filters with a stack of recurrent layers and outperforms
by a large margin the state-of-the-art system, the Language EN-
vironment Analysis (LENA) that has been used in numerous
child language studies.
Index Terms: Child-Centered Recordings, Voice Type Classifi-
cation, SincNet, Long Short-Term Memory, Speech Processing,
LENA

1. Introduction and related work
In the past, language acquisition researchers’ main material
was short recordings [1] or times of in-person observations [2].
However, investigating the language phenomenon in this man-
ner can lead to biased observations, potentially resulting in di-
vergent conclusions [3]. More recently, technology has allowed
researchers to efficiently collect and analyze recordings over a
whole day. By the combined use of a small wearable device
and speech processing algorithms, one can get meaningful in-
sights of children’s daily language experiences. While daylong
recordings are becoming a central tool for studying how chil-
dren learn language, a relatively small effort has been made to
propose robust and bias-free speech processing models to an-
alyze such data. It may however be noticed that some collab-
orative works that benefit both the speech processing and the
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child language acquisition communities have been done. In
particular, we may cite Homebank, an online repository of day-
long child-centered audio recordings [4] that allow researchers
to share data more easily. Some efforts have also been made
to gather state-of-the-art pretrained speech processing models
in DiViMe [5], a user-friendly and open-source virtual ma-
chine. Challenges and workshops using child-centered record-
ings [6, 7], also attracted the attention of the speech processing
community. Additionally, the task of classifying audio events
has often been addressed in the speech technology literature. In
particular, the speech activity detection task [8] or the acous-
tic event detection problem [9, 10] are similar to the voice type
classification task we address in this paper.

Given the lack of open-source and easy-to-use speech
processing models for treating child-centered recordings, re-
searchers have been relying, for the most part, on the Language
ENvironment Analysis (LENA) software [11] to extract mean-
ingful information about children’s language environment. This
system will be introduced in more detail in the next section.

1.1. The LENA system

The LENA system consists of a small wearable device com-
bined with an automated vocal analysis pipeline that can be
used to study child language acquisition. The audio recorder
has been designed to be worn by young children as they go
through a typical day. In the current LENA system, after a full
day of audio has been been captured by the recorder, the au-
dio files are transferred to a cloud and analyzed by signal pro-
cessing models. These latter have been trained on 150 hours
of proprietary audio collected from recorders worn by Ameri-
can English-speaking children. The speech processing pipeline
consists of the following steps [11, 13, 14]:

1 First, the audio is segmented into mutually exclusive cat-
egories that include: key child vocalizations (i.e., vo-
calizations produced by the child wearing the recording
device), adult male speech, adult female speech, other
child speech, overlapping sounds, noise, and electronic
sounds.

2 The key child vocalization segments are further cate-
gorized into speech and non-speech sounds. Speech
encompasses not only words, but also babbling and
pre-speech communicative sounds (such as squeals and
growls). Child non-speech sounds include emotional
reactions such as cries, screams, laughs and vegetative
sounds such as breathing and burping.

3 A model based on a phone decoder estimates the number
of words in each adult speech segment.

4 Further analyses are performed to detect conversational
turns, or back and forth alternations between the key
child and an adult.
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Figure 1: Proposed architecture. The network takes the raw waveform of a 2s audio chunk as input and passes on to SincNet [12]. The
low-level representations learnt by SincNet are then fed to a stack of two bi-directional LSTMs, followed by three feed-forward layers.
The output layer is activated by a sigmoid function that returns a score ranging between 0 and 1 for each of the classes.

The LENA system has been used in multiple studies cov-
ering a wide range of expertise including a vocal analysis of
children suffering from hearing loss [15], the assessment of a
parent coaching intervention [16], and a study of autism spec-
trum disorders [17]. An extensive effort has been made to as-
sess the performance of the LENA speech processing pipeline
[18, 19, 20].

Despite its wide use in the child language community,
LENA imposes several limiting factors to scientific progress.
First, as their software is closed source, there is no way to build
upon their models to improve performance, and we cannot be
certain about all design choices and their potential impact on
performance. Moreover, since their models have been trained
only on American English-speaking children recorded with one
specific piece of hardware in urban settings, the model might
potentially be overfit to these settings, with a loss of generaliza-
tion to other languages, cultures, and recording devices.

1.2. The present work

Our work aims at proposing a viable open-source alternative to
LENA for classifying audio frames into segments of key child
vocalizations, adult male speech, adult female speech, other
child vocalizations, and silence. The general architecture is pre-
sented in 2.1. Additionally, we gathered multiple child-centered
corpora covering a wide range of conditions to train our model
and compare it against LENA. This data set is described in fur-
ther details in 2.2.

2. Experiments
2.1. End-to-end voice type classification

The voice type classification problem can be described as the
task of identifying voice signal sources in a given audio stream.
It can be tackled as a multi-label classification problem where
the input is the audio stream divided into N frames S =
{s1, s2, . . . , sN} and the expected output is the corresponding
sequence of labels y = {y1,y2, . . . ,yN} where each yi is of
dimension K (the number of labels) with yi,j = 1 if the jth

class is activated, yi,j = 0 otherwise. Note that, in the multi-
label setup, multiple classes can be activated at the same time.

At training time, fixed-length sub-sequences made of mul-
tiple successive frames, are drawn randomly from the training
set to form mini-batches of size M .

As illustrated in Figure 1, these fixed-length sub-sequences
are processed by a SincNet [12] that aims at learning meaning-
ful filter banks specifically customized to solve the voice type
classification task. These low-level signal representations are
then fed into a stack of bi-directional long short-term memory
(LSTM) layers followed by a stack of feed-forward (FF) layers.
Finally, the sigmoid activation function is applied to the final

output layer of dimension K so that each predicted score ŷi,j
consists of a number ranging between 0 and 1. The network is
trained to minimize the binary cross-entropy loss:

L = − 1

KM

M∑
i=1

K∑
j=1

yi,j log ŷi,j + (1− yi,j) log (1− ŷi,j)

(1)
At test time, audio files are processed using overlapping

sliding sub-sequences of the same length as the one used in
training. For each time step t, and each class j, this results in
several overlapping sequences of prediction scores, which are
averaged to obtain the final score for class j. Finally, time steps
with prediction scores greater than a tunable threshold σj are
marked as being activated for the class j.

Our use case considers K = 5 different classes or sources
which are:

• KCHI, for key-child vocalizations, i.e., vocalizations
produced by the child wearing the recording device

• OCH, for all the vocalizations produced by other children
in the environment

• FEM, for adult female speech

• MAL, for adult male speech

• SPEECH, for when there is speech

As the LENA voice type classification model is often used
to sample audio in order to extract segments containing the most
speech, it appeared to us that it was useful to consider a class for
speech segments produced by any type of speaker. Moreover,
in our data set, some of the segments have been annotated as
UNK (for unknown) when the annotator was not certain of which
type of speaker was speaking (See Table 1). Considering the
SPEECH class allows our model to handle these cases.

One major design difference with the LENA model is that
we chose to treat the problem as a multi-label classification task,
hence multiple classes can be activated at the same time (e.g.,
in case of overlapping speech). In contrast, LENA treats the
problem as a multi-class classification task where only one class
can be activated at a given time step. In the case of overlapping
speech, LENA model returns the OVL class (which is also used
for overlap between speech and noise). More details about the
performance obtained by LENA on this class can be found in
[18].

2.2. Datasets

In order to train our model, we gathered multiple child-centered
corpora data [21, 22, 23, 24, 25, 26, 27, 28, 29, 30] drawn from
various child-centered sources, several of which were not day-
long. Importantly, the recordings used for this work cover a
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Table 1: Description of the BabyTrain data set. Child-centered corpora included cover a wide range of conditions (including different
languages and recording devices). ACLEW-Random is kept as a hold-out data set on which LENA and our model are compared. DB
correpond to datasets that can be found on Databrary, HB the ones that can be found on Homebank.

Cumulated utterance duration

Corpus Access LENA-recorded? Language Tot. Dur. KCHI OCH MAL FEM UNK

BabyTrain

ACLEW-Starter mixture (DB) mostly Mixture 1h30m 10m 5m 6m 20m 0m
Lena Lyon private (HB) yes French 26h51m 4h33m 1h14m 1h9m 5h02m 1h0m
Namibia upon agreement no Ju|’hoan 23h44m 1h56m 1h32m 41m 2h22m 1h01m
Paido public (HB) no Greek, Eng., Jap. 40h08m 10h56m 0m 0m 0m 0m
Tsay public (HB) no Mandarin 132h02m 34h07m 2h08m 10m 57h31m 28m
Tsimane upon agreement mostly Tsimane 9h30m 37m 23m 11m 28m 0m
Vanuatu upon agreement no Mixture 2h29m 12m 5m 5m 9m 1m
WAR2 public (DB) yes English (US) 50m 14m 0m 0m 0m 9m

Hold-out set

ACLEW-Random private (DB) yes Mixture 20h 1h39m 45m 43m 2h48m 0m

wide range of environments, conditions and languages and have
been collected and annotated by numerous field researchers.

We will refer to this data set as BabyTrain, of which a broad
description is given in Table 1.

We split the BabyTrain data set into a training, development
and test sets, containing approximately 60%, 20% and 20% of
the audio duration respectively. We applied this split such that
files associated to a given key child were included in only one of
the three sets, splitting children up within each of the 8 corpora
of BabyTrain. The only exception was WAR2, too small to be
divided, and therefore put in the training set in its entirety.

In order to ensure that our models generalize well enough
to unseen data, and to compare the performance with the LENA
system, we kept the ACLEW-Random as a hold-out data set.

2.3. Evaluation metric

For each class, we use the F-measure between precision and
recall, such as implemented in pyannote.metrics [31] to
evaluate our systems:

F-measure =
2× precision× recall

precision + recall

where precision = tp/(tp + fp) and recall = tp/(tp + fn) with:

• tp the duration of true positives

• fp the duration of false positives

• fn the duration of false negatives

We select our models by averaging the F-measure across the
5 classes. Note that these 5 metrics have been computed in a
binary fashion, where the predictions of our model for a given
class were compared to all reference speaker turns such as pro-
vided by the human annotations (no matter if the latter were
overlapping or not). In diarization studies, the choice of a collar
around every reference speaker turns is often made to account
for inaccuracies in the reference labels. We chose not to do so,
consequently all numbers reported in this paper can be consid-
ered as having a collar equal to 0.

2.4. Implementation details

Figure 1 illustrates the broad architecture used in all experi-
ments. For SincNet, we use the configuration proposed by the

authors of the original paper [12]. All LSTMs and inner feed-
forward layers have a size of 128 and use tanh activations. The
last feed-forward layer uses a sigmoid activation function.

Data augmentation is applied directly on the waveform us-
ing additive noise extracted from the MUSAN database [32]
with a random target signal-to-noise ratio ranging from 5 to 20
dB. The learning rate is set up by a cyclical scheduler [33], each
cycle lasting for 1.5 epoch.

Since we address the problem in a multi-label classification
fashion, multiple classes can be activated at the same time. For
the reference turns, the SPEECH class was considered to be ac-
tivated whenever one (or more) of the KCHI, CHI, FEM, MAL
or UNK class was activated. The UNK class (see Table 1) corre-
sponds to cases when the human annotator could hear that the
audio contained speech or vocalizations, without being able to
identify the voice source. This class does contribute in activat-
ing the SPEECH class, but our model does not return a score for
it.

2.5. Evaluation protocol

For all experiments, the neural network is trained for 10 epochs
(approximately 2400 hours of audio) on the training set. The
development set is used to choose the actual epoch and thresh-
olds {σj}Kj=1 that maximizes the average F-measure between
precision and recall across classes.

We report both the in-domain performance (computed on
the test set of BabyTrain) and the out-of-domain performance
(computed on the hold-out set, ACLEW-Random). We compare
our model with the LENA system on the hold-out set.

3. Results
We evaluate two different approaches, one consisting of 5 mod-
els trained separately for each of the class (referred as binary),
and one consisting of a single model trained jointly on all the
classes (referred as multitask). At first, both in the binary
and the multitask scenario, architectures shared the same set
of hyper-parameters. Only the dimension of the output layer
differed. Results indicated that multitask approaches were sig-
nificantly better than binary ones, which seems to show that
sharing weights during training helps better learn the bound-
aries between the different classes.

To further improve the performance of our model, we tried
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Table 2: In-domain performance in terms of F-measure between precision and recall. The ”Ave.” column represents the F-measure
averaged across the 5 classes. Numbers are computed on the test set from which the Paido corpora has been removed. Performance
on the development set are reported using small font size. We report two variants, the first one is based on 5 binary models trained
separately on each of the class, the second one consists of a single model trained in a multitask fashion

Train/Dev. System KCHI OCH MAL FEM SPEECH Ave.

without Paido binary 76.1 79.2 22.5 28.7 37.8 38.9 80.2 83.5 88.0 89.3 60.9 63.9
with Paido multi 75.8 78.7 25.4 30.3 40.1 43.2 82.3 83.9 88.2 90.1 62.3 65.2

without Paido multi 77.3 80.6 25.6 30.6 42.2 43.7 82.4 84.2 88.4 90.3 63.2 65.9

multiple sets of hyper-parameters (varying the number of filters,
the number of LSTM and FF layers, and their size). However,
no significant differences have been observed among the dif-
ferent architectures. The retained architecture consists of 256
filters of length L = 251 samples, 3 LSTM layers of size 128,
and 2 FF layers of size 128.

Finally, removing Paido from the training and development
set led to improvements on the other test domains, as well as
the hold-out set, while the performance on the Paido domain
remained high. Indeed, we observed a F-measure of 99 on the
KCHI class for the model trained with Paido as compared to
89 for the model trained without it. This difference can be
explained by a higher amount of false alarms returned by the
model trained without it. The Paido domain is quite far from
our target domain since it consists of laboratory recordings of
words in isolation spoken by children, and thus it is reasonable
to think that removing it leads to better models.

3.1. In-domain performance

Since LENA can only be evaluated in data collected exclusively
with the LENA recording device and BabyTrain contains a mix-
ture of devices, we do not report on LENA in-domain perfor-
mance. Additionally, comparing performance on a domain that
would have been seen during the training by our model but not
by LENA would have unfairly advantaged us.

Table 2 shows results in terms of F-measure between pre-
cision and recall on the test set for each of the 5 classes. The
best performance is obtained for the KCHI, FEM, and SPEECH
classes, which correspond to the 3 classes that are the most
present in BabyTrain (See Table 1). Performance is lower for
the OCH class and MAL classes, with an F-measure of 25.6 and
42.2 respectively, most likely due to the fact that these two
classes are underrepresented in our data set. The F-measure is
lowest for the OCH class. In addition to being underrepresented
in the training set, utterances belonging to the OCH class can
easily be confused with KCHI utterances since the main feature
that differentiates these two classes is the average distance to
the microphone.

The multitask model consistently outperforms binary ones.
When training in a multitask fashion, increases are higher for
the lesser represented classes, namely OCH and MAL. Addition-
ally, removing Paido leads to an improvement of 0.9 in terms of
average F-measure on the other domains.

3.2. Performance on the hold-out data set

Table 3 shows performance of LENA, our binary variant, and
our multitask variant on the hold-out data set. As observed on
the test set, the model trained in a multi-task fashion shows bet-
ter performance than the models trained in a binary fashion. Re-
moving Paido leads to a performance increase of 4 points on the
average F-measure.

Table 3: Performance on the hold-out data set in terms of F-
measure between precision and recall. ”Ave.” column repre-
sents the F-measure averaged across the 5 classes. The hold-
out data set has never been seen during the training, neither by
LENA, nor by our model.

Train/Dev. System KCHI OCH MAL FEM SPEECH Ave.

english (USA) LENA 54.9 28.5 37.2 42.6 70.2 46.7
without Paido binary 67.6 23.0 31.6 62.6 77.6 52.5

with Paido multi 66.4 19.9 39.9 63.0 77.6 53.3
without Paido multi 68.7 33.2 42.9 63.4 78.4 57.3

Turning to the comparison with LENA, both the LENA
model and our model show lower performance for the rarer OCH
and MAL classes. Our model outperforms the LENA model by
a large margin. We observe an absolute improvement in terms
of F-measure of 13.8 on the KCHI class, 4.6 on the OCH class,
5.6 on the MAL class, 20.8 on the FEM class, and 8.1 on the
SPEECH class. This leads to an absolute improvement of 10.6
in terms of F-measure averaged across the 5 classes.

4. Reproducible research
All the code has been implemented using pyannote.audio
[34], a python open-source toolkit for speaker diarization. Our
own code, easy-to-use scripts to apply the pretrained model can
be found on our GitHub repository 1, which also includes con-
fusion matrices and a more extensive comparison with LENA.
As soon as required agreements will be obtained, we plan to
facilitate access to the data by hosting them on Homebank.

5. Conclusion
In this paper, we gathered recordings drawn from diverse child-
centered corpora that are known to be amongst the most chal-
lenging audio files to process, and proposed an open-source
speech processing model that classifies audio segments into
key child vocalizations, other children vocalizations, adult male
speech, and adult female speech. We compared our approach
with a homologous system, the LENA software, which has been
used in numerous child language studies. Our model outper-
forms LENA by a large margin and will, we hope, lead to more
accurate observations of early linguistic environments. Our
work is part of an effort to strengthen collaborations between
the speech processing and the child language acquisition com-
munities. The latter have provided data as that used here, as
well as interesting challenges [6, 7]. Our paper is an example of
the speech processing community returning the favor by provid-
ing robust models that can handle spontaneous conversations in
real-world settings.

1 https://github.com/MarvinLvn/voice-type-classifier
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