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Abstract 
Speech synthesis system based on non-invasive brain-
computer interface technology has the potential to restore 
communication abilities to patients with communication 
disorders. To this end, electroencephalogram (EEG) based 
speech imagery technology is fast evolving largely due to its 
advantages of simple implementation and low dependence on 
external stimuli. This work studied possible factors accounting 
for the classification accuracies of EEG-based imaginary 
Mandarin tones, which has significance to the development of 
BCI-based Mandarin speech synthesis system. Specially, a 
Mandarin tone imagery experiment was designed, and this 
work studied the effects of electrode configuration and tone 
cuing on accurately classifying four Mandarin tones from 
cortical EEG signals. Results showed that the involvement of 
more activated brain regions (i.e., Broca’s area, Wernicke’s 
area, and primary motor cortex) provided a more accurate 
classification of imaginary Mandarin tones than that of one 
specific region. At the tone cue stage, using audio-visual 
stimuli led to a much stronger and more separable activation 
of brain regions than using visual-only stimuli. In addition, the 
classification accuracies of tone 1 and tone 4 were 
significantly higher than those of tone 2 and tone 3.  
Index Terms: Electroencephalogram (EEG), speech imagery, 
Mandarin tones, support vector machine (SVM). 

1. Introduction 
Speech synthesis technology based on pronunciation 
imagination is a process of making a machine to produce 
understandable speech by utilizing the psychological, 
physiological and physical characteristics of human being 
when imagining speech pronunciation [1-2]. Traditional 
speech synthesis technology models the physical structure of 
human voice to produce speech (e.g., tongue motion, airflow 
variation) [e.g., 3]. The parameters of this kind of system are 
too many and complex to be optimized. Subsequently, a 
trainable speech synthesis system combining big data was 
developed [e.g., 4]. Through the training of a larger number of 
data, this kind of system obtained the statistical acoustic 
model of speech, and then generated the corresponding speech 
synthesizer. Although this system constructed an acoustic 
model automatically and improved the effect of speech 
synthesis, it had some problems (e.g., poor model 
generalization ability), and commonly needed a lot of 
annotated data. The above two methods are mainly based on 
the physical information of speech pronunciation for modeling 

analysis, ignoring the psychological and physiological 
characteristics for speech production. Studies are actively 
ongoing towards reconstructing understandable speech in 
tasks of speech imagery. Recently, based on the neural 
electrical signal information, Chang et al. fused the 
pronunciation model parameters and reconstructed the 
comprehensible speech information [1]. Hong et al. used 
electroencephalogram (EEG) information to reconstruct 
Chinese phonetic information [2]. Herff and Schultz used 
electrocorticogram (ECoG) data as the input signal of 
automatic speech recognition technology and successfully 
realized the recognition of audibly spoken speech [5]. While 
these studies showed that brain-computer interface (BCI) 
technology had become a new development direction of 
intelligent speech synthesis system, the EEG signals in these 
studies were largely recorded by invasive electrodes, making 
them difficult to be applied in real situations. Meanwhile, for 
reconstructing an understandable speech from speech imagery 
tasks, a lot of work has to been done to explore the 
neuropsychological principles of speech imagery tasks [e.g., 
6-10]. For instance, Tian et al. explored the 
neuropsychological principles of people performing speech 
imagery tasks by using two methods of speech imagery (i.e., 
speaking imagery and hearing imagery), and compared the 
activation levels and regions of the brain under the two 
methods [6-7]. Matsumoto et al. studied speech imagery to 
classify two of five Japanese vowels, and achieved a 
classification accuracy of 77% [8].  

Most existing speech imagery tasks focus on the 
perception and classification of non-tonal languages, e.g., 
primarily the recognition of vowels, consonants or words in 
English. As a tonal language, Mandarin has four lexical tones, 
i.e., the flat tone, the rising tone, the falling-rising tone, and 
the falling tone (usually expressed as tone 1, tone 2, tone 3 and 
tone 4) [11-12]. Lexical tone plays an important role in the 
recognition and understanding of Chinese characters [13], and 
the neuropsychological principles of Chinese speech imagery 
tasks are different from those of non-tonal languages [14-15]. 
To date, little work has been done to investigate the 
neuropsychological principles of Mandarin tone imagery. 

The aim of this work was to study the classification of 
imaginary Mandarin tones with cortical EEG signals. A 
Mandarin tone imagery experiment was designed, including 
two types of tone cuing methods (i.e., with visual stimuli and 
audio-visual stimuli) before the tone imagination stage. The 
possible accounts for the tone classification accuracy were 
analyzed, including the effects of EEG electrode configuration 
used in tone classification and tone cuing to activate brain 
regions before Mandarin tone imagination. 
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Figure 1: Visual stimuli used in this experiment, including 
Chinese syllable /ba/ in 4 lexical tones and the sign ‘+’ that 
prompts the subjects to imagine the Mandarin tone. 

2. Methods 

2.1. Subjects and materials 

Fourteen (6 male and 8 female) Mandarin-speaking students 
from Southern University of Science and Technology took 
part in the experiment. All participants were physically 
healthy and had no neurological or psychological problems. 
They signed informed consent forms and were paid for their 
participations. The procedure involving human experiment 
was reviewed and approved by the Research Ethics 
Committee of the Southern University of Science and 
Technology. 

Two types of stimuli were used to cue Mandarin tone 
imagination, yielding two conditions. The first condition used 
visual-only stimuli, while the second condition used combined 
audio-visual stimuli. Figure 1 shows the visual stimuli 
presented as pictures used in the first condition (i.e., visual-
only). In order to control the interference of image 
transformation, all symbols/signs in the pictures were 
presented at the same size. The visual stimuli in condition 2 
(i.e., combined audio-visual) were the same as those used in 
condition 1, while the audio stimuli in condition 2 were 
syllable /ba/ in four Mandarin tones pronounced by an adult 
female native Mandarin-Chinese speaker. The pronounced 
Mandarin syllables were recorded at a sampling rate of 16 kHz, 
and their durations were normalized to 1 sec. 

2.2. Experimental paradigm and procedure 

Each stimulus condition consisted of 4 test blocks (the order 
of stimuli presentation was pseudo-random), and subjects 
were asked to imagine 40 Mandarin tones in each block. Each 
speech imagery trial was divided into a tone cue stage (with 
visual-only stimuli or audio-visual stimuli) and a subsequent 
tone imagination stage. Subjects pressed any key to start the 
experiment when they were ready. The visual-only stimuli (or 
combined audio-visual stimuli) appeared for 1 sec at the tone 
cue stage. Then at the tone imagination stage (immediately 
following the tone cue stage), a prompt sign ‘+’ appeared to 
inform the participant to imagine the corresponding tone. The 
tone imagination stage lasted for 2 sec. The total duration of 
one stimulus condition was around 8 mins. All audio stimuli 
were presented through a Sennheiser HD 25 earphone at a 
comfortable level. During the whole experiment, participants 
sat in an acoustically and electrically shielded chamber. They 
were seated comfortably and instructed to pay attention to 
visual-only (or combined audio-visual) stimuli. 

2.3. EEG data recording and pre-processing 

The EEG signals were recorded through a 64-channel 
electrode cap (Neuroscience Inc.). Following the extended 
international 10-20 system, the cap was placed at specific 
positions. The top of the nose served as a reference for all 
electrodes, and the ground electrode was attached to the 
forehead. The impedance between the reference electrode and 
any recording electrode was less than 5 kΩ. The sampling rate 
of EEG data was 500 Hz. To reduce unnecessary motion 
artifacts, the subjects were asked to minimize the body 
movements. The EEG data at the tone cue stage and the tone 
imagination stage were recorded. 

The recorded EEG signals were analyzed with EEGLAB 
14.1.1. First, the data were re-referenced using the 
contralateral mastoid signals. Epochs containing artifacts 

exceeding ±75 μV were excluded from the averaging 
procedure. Then the artifact (e.g., eye blinks, horizontal eye 
movement, electrocardiographic activity) correction was 
performed by infomax independent component analysis. After 
artifact removal, for the EEG signals at the tone cue stage, 
each epoch was selected between 100 ms pre-stimulus and 
1000 ms post-stimulus and corrected with the baseline of the 
pre-stimulus time window; for the EEG signals at the tone 
imagination stage, the range of each epoch was from -100 to 
900 ms, and the baseline was corrected with that of the pre-
stimulus time window. 

2.4. EEG data processing 

For the EEG data recorded at the tone cue stage, the EEGLAB 
toolbox was used to calculate the peak amplitude and latency. 
For the EEG signals at the tone imagination stage, the 
common spatial patterns (CSP) were used to extract the 
features of tone pronunciation imagination from the EEG data, 
and then an adaptive support vector machine (SVM) was used 
to classify and recognize Mandarin tones. 

For EEG data processing, CSP is widely noted as one of 
feature extraction methods with the best performance and the 
most extensive applications [e.g., 16-19]. The CSP processing 
extracts EEG features by maximizing the variance of the data 
between classes and minimizing the variance within classes. 
Since CSP is only applicable to dichotomies, the following 
method was used to extract features for the problem of four 
tone classification in this work. If tone 1 was treated as one 
type of data, the other three tones were treated as another type 
of data. Based on these two types of data, the characteristics of 
tone 1 could be extracted, and the characteristics of the 
remaining three tones were further extracted [20]. 

SVM has strong generalization ability and strong 
adaptability to the problem of over-fitting and curse-of-
dimensionality [21]. It has been widely used to classify the 
EEG data of speech imagery, and better classification 
accuracies were obtained in early studies [e.g., 16, 22-23]. The 
basic principle of SVM is to find an optimal classification 
hyperplane to maximize the classification interval between 
two types of data. In this work, several sub-classifiers were 
trained to solve the 4-class classification task. First, one 
classifier was trained for any pair of 2 classes chosen from the 
four tone classes, and the total number of 2-class classifiers 
was six (i.e., tone 1 vs. tone 2, tone 1 vs. tone 3, tone 1 vs. 
tone 4, tone 2 vs. tone 3, tone 2 vs. tone 4, and tone 3 vs. tone 
4). Then, the EEG data to be classified were processed by all 
2-class classifiers, and a vote was used to determine the final 
class attribute of the Mandarin tone. 

It is feasible to use all 64 channels of EEG data to 
categorize tones. This work studied the effect of different 
language-relevant brain regions on Mandarin tone imagination 
and classification. For the speech imagery task, the brain’s 
main regions of activation were Broca’s area, Wernicke’s area, 
and the primary motor cortex [12]. Each area had EEG signals 
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Table 1.   Descriptive statistics (average ± standard deviant) of the classification accuracies of 4 Mandarin tones at different 
electrode configurations. Broca’s area: electrodes F5 and FC3, Wernicke’s area: electrodes P5 and CP3, and primary motor 
cortex: electrodes C3 and C4. 

Conditions 2 electrodes All 6 electrodes (%) 
Broca’s area (%) Wernicke’s area (%) primary motor cortex (%) 

Visual-only 39.9 ± 1.3 31.6 ± 1.1 34.4 ± 1.2 67.7 ± 1.0 
Combined audio-visual 55.2 ± 1.1 39.2 ± 1.0 41.2 ± 0.9 80.1 ± 1.2 

 

 
Figure 2: The average brainwaves of all subjects at electrode CZ at the tone cue stage. (a): Average brainwaves under the 
visual-only condition; and (b): Average brainwaves under the combined audio-visual condition. The rectangle represents the 
area where the peak occurs for different tones.  

recorded from 2 electrodes (see Table 1) in this work, i.e., F5 
and FC3 at Broca’s area, P5 and CP3 at Wernicke’s area, and 
C3 and C4 at primary motor cortex. Then, this work also used 
the EEG signals recorded from the 6 electrodes involved in 
those three brain regions to classify Mandarin tones, aiming to 
achieve a good accuracy of tone classification under the 
premise of reducing the amount of data. 

3. Results 

3.1. Effect of electrode configuration on classification 
accuracy 

Table 1 shows the average classification accuracies (across all 
4 Mandarin tones) for 4 types of electrode configurations 
under the 2 tone cuing conditions (i.e., visual-only and 
combined audio-visual). It is seen that when the EEG signals 
from 2 electrodes at a specific brain region are utilized to 
classify imaginary Mandarin tones, the EEG information from 
Broca’s area yields the best classification accuracy under both 
tone cuing conditions, i.e., 55.2% under the combined audio-
visual condition and 39.9% under the visual-only condition. In 
addition, when EEG signals from all 6 electrodes at Broca’s 
area, Wernicke’s area and primary motor cortex are used to 
classify imaginary Mandarin tones, the classification 
accuracies are significantly improved (p<0.01), i.e., 80.1% 
under the combined audio-visual condition and 67.7% under 
the visual-only condition. 

3.2. The morphology comparison of brainwaves 

Figure 2 shows the average brainwaves across all subjects at 
electrode CZ at the two tone cue stages (i.e., under the visual-
only and combined audio-visual conditions). For the 
brainwaves under the visual-only condition in Fig 2(a), two 
notable regions are observed (marked with two rectangles). 
Meanwhile, for the brainwaves under the combined audio-
visual condition in Fig 2(b), three notable regions are observed 

(marked with three rectangles). In Fig. 2, the peak of 
brainwave of each tone was used as the center, and then a time 
window of 200 ms was used to calculate the amplitude and 
latency at electrode CZ. 

Multiple paired comparisons with Bonferroni correction 
were run between the characteristics (i.e., amplitude and 
latency) of brainwaves across the two tone cuing conditions. 
The Bonferroni-corrected statistical significance level was set 
at p<0.01 (α = 0.05). Analysis revealed that for the positive 
peaks in Fig. 2(a) and Fig. 2(b), both the paired amplitude and 
paired latency under the audio-visual condition were 
significantly larger (p<0.01) than those under the visual-only 
condition. In addition, based on multiple paired comparisons 
with Bonferroni correction, the amplitudes and latency of four 
Mandarin tones in five windows were post hoc tested. The 
Bonferroni-corrected statistical significance level was set at 
p<0.01 (α = 0.05). At the visual-only condition in Fig. 2(a), 
for the positive peaks, there was no significant difference 
between the amplitudes of any two tones (p>0.01), and no 
significant differences between the latencies of any two tones 
(p>0.01). The negative peak in Fig. 2(a) had the same results 
(i.e., no significant different among amplitudes or latencies) as 
the positive peak in Fig. 2(a). At the combined audio-visual 
condition, there was no significant difference between the 
amplitudes of any two tones (p>0.01) in the first (negative) 
peak in Fig. 2(b). However, for the latencies, there were 
significant differences between tone 1 and tone 2 (p<0.01), 
tone 1 and tone 3 (p<0.01), tone 3 and tone 4 (p<0.01), and 
there was no significant differences between the other paired 
tones (p>0.01). For the amplitudes of the second (positive) 
peak in Fig. 2(b), only tone 2 and tone 4 had significant 
difference (p<0.01), and the latencies between any two tones 
had significant differences (p<0.01). Finally, for the 
amplitudes of the third (negative) peak in Fig. 2(b), there were 
no significant differences (p>0.01) between any two tones. 
The latency of tone 2 or tone 3 was significantly different 
(p<0.01) with that of tone 4. 
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        (a)                                             (b) 

Figure 3: The confusion matrices of Mandarin tone 
classification under the (a) visual-only and (b) combined 
audio-visual conditions. 

3.3. The confusion matrices of Mandarin tone 
classification 

The confusion matrices of tone classification under the two 
tone cuing conditions are shown in Fig. 3. Multiple paired 
comparisons with Bonferroni correction were run between the 
accuracies across the two tone cuing conditions. The 
Bonferroni-corrected statistical significance level was set at 
p<0.01 (α = 0.05). Analysis revealed that for each imaginary 
Mandarin tone, the average classification accuracy under the 
audio-visual condition was significantly larger (p<0.01) than 
that under the visual-only condition. Furthermore, post hoc 
tests, according to multiple paired comparisons with 
Bonferroni correction, were run between the classification 
accuracies across the 4 imaginary Mandarin tones under each 
tone cuing condition. The Bonferroni-corrected statistical 
significance level was set at p<0.01 (α = 0.05). Analysis 
showed that under the visual-only condition in Fig. 3(a), there 
was no significant differences (p>0.01) between any paired 
tone classification accuracies. However, under the audio-
visual condition in Fig. 3(b), both the classification accuracy 
of tone 1 or tone 4 was significantly larger (p<0.01) than that 
of tone 2 or tone 3. There was no significant difference 
(p>0.01) between the tone classification accuracies of tone 1 
and tone 4, and no significant difference (p>0.01) between the 
tone classification accuracies of tone 2 and tone 3. 

4. Discussion and conclusions 
This work carried out a Mandarin tone imagery experiment, 
and specially examined potential factors affecting the 
accuracies of classifying 4 Mandarin tones from EEG signals 
recorded in the Mandarin tone imagery experiment, including 
the effects of electrode configuration and tone cuing. Table 1 
shows that under the conditions of using 2 electrodes from a 
specific brain region, the accuracies of classifying four tones 
are low, i.e., from 31.6% to 39.9 % under the visual condition, 
and from 39.2% to 55.2% under the combined audio-visual 
condition. Broca’s area has the highest average accuracies of 
tone classification under the two conditions (i.e., 39.9 % and 
55.2%), while Wernicke’s area has the lowest average 
accuracies of tone classification (31.6% and 39.2%). This may 
be attributed to the fact that different brain regions have 
different language functions, i.e., Broca’s area and Wernicke’s 
area are mainly responsible for language expression and 
language comprehension/memory, respectively, and the 
activation of primary motor cortex is affected by the vocal 
organ [24-25]. When all three brain regions (i.e., with 6 

electrodes in this work) examined are used for tone 
classification, the accuracies of tone classification are 
significantly improved to 67.7% and 80.1% under the two 
conditions. This indicates that, depending on the tone cuing 
condition, the Mandarin tone imagery task is a complex 
process involving several language-related brain regions. 
Hence, when more language-related brain regions are involved 
in the EEG-based classification of imaginary Mandarin tones, 
more important features could be fused from the EEG signals, 
favoring the Mandarin tone classification performance. 

The results of the present work showed that the combined 
audio-visual condition (i.e., using auditory and visual stimuli 
at the tone cue stage) yielded better tone classification 
performance than the visual-only condition (i.e., using visual 
stimuli at the tone cue stage) (see Table 1 and Figure 3), 
suggesting the influence of tone cuing on Mandarin tone 
imagery. Analyses were carried to explore the possible 
mechanism accounting for the influences of the two tone cuing 
methods in this work. It was seen in Fig. 2(a) that under the 
visual-only condition, the amplitudes and latencies of the four 
brain responses (corresponding to four tones) at the tone cue 
stage were not significantly different (or not separable), 
suggesting that visual-only stimuli caused similar levels and 
patterns of brain activation. To some extent, this was 
consistent with the tone classification accuracies shown in Fig. 
3(a), whereas at the tone imagination stage, similar 
classification accuracies (i.e., 67.3%, 68.4%, 67.3%, and 
67.7%) were achieved for the four Mandarin tones. On the 
contrary, as shown in Fig. 2(b) under the combined audio-
visual condition, the four brain responses (corresponding to 
four tones) have notably different waveform, including their 
amplitudes and latencies. These separable waveforms of the 
four brain responses are beneficial for classify each tone, 
which partially accounts for the better tone classification 
accuracies observed in Fig. 3(b) under the combined audio-
visual condition. By comparing the EEG signals recorded 
under the two conditions (i.e., visual-only vs. combined audio-
visual in Fig. 2), it is seen that under the audio-visual 
condition, the brain was more activated with a significantly 
large amplitude at the tone cue stage, which might also favor 
tone classification at the tone imagination stage. Further 
studies are warranted to investigate the relation between the 
tone cue and imagination stages. 

In conclusion, this work studied the Mandarin tone 
classification with cortical EEG signals in a Mandarin tone 
imagery task. Specially, this work assessed the effects of 
electrode configuration and tone cuing on the tone 
classification accuracy. Results indicated that the involvement 
of more activated language-related brain regions provided a 
more accurate classification of imaginary Mandarin tones than 
that of a specific brain region. The tone cuing condition with 
audio-visual stimuli yielded better classification accuracies 
than that with visual-only stimuli. This was possibly because 
audio-visual stimuli were more effective than visual-only 
stimuli in promoting the separable activation of brain regions 
at the tone cue stage.  
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