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Abstract
Pseudo-labeling (PL) has been shown to be effective in semi-
supervised automatic speech recognition (ASR), where a base
model is self-trained with pseudo-labels generated from unla-
beled data. While PL can be further improved by iteratively
updating pseudo-labels as the model evolves, most of the pre-
vious approaches involve inefficient retraining of the model or
intricate control of the label update. We present momentum
pseudo-labeling (MPL), a simple yet effective strategy for semi-
supervised ASR. MPL consists of a pair of online and offline
models that interact and learn from each other, inspired by the
mean teacher method. The online model is trained to predict
pseudo-labels generated on the fly by the offline model. The
offline model maintains a momentum-based moving average of
the online model. MPL is performed in a single training process
and the interaction between the two models effectively helps
them reinforce each other to improve the ASR performance. We
apply MPL to an end-to-end ASR model based on the connec-
tionist temporal classification. The experimental results demon-
strate that MPL effectively improves over the base model and
is scalable to different semi-supervised scenarios with varying
amounts of data or domain mismatch.
Index Terms: pseudo-labeling, self-training, semi-supervised
learning, end-to-end speech recognition, deep learning

1. Introduction
Advances in deep learning have led to remarkable success in
automatic speech recognition (ASR) [1, 2]. Much of the recent
progress lies in the end-to-end (E2E) framework [3–5], which
directly optimizes speech-to-text conversion and greatly sim-
plifies model training and inference processes. While E2E sys-
tems compete with traditional hidden Markov model-based sys-
tems [6–8], their performance heavily relies on the availability
of a large amount of labeled data (speech-text pairs), which re-
quires great annotation costs and is not always achievable.

In order to compensate for the lack of labeled data, semi-
supervised learning has been attracting increasing attention for
improving E2E ASR. Semi-supervised learning utilizes labeled
data as well as unlabeled data during model training, where
the amount of labeled data is in general much smaller than
that of unlabeled data. Some early works for semi-supervised
E2E ASR focus on training with a reconstruction framework,
including approaches based on a text-to-speech model [9–11]
or a sequential auto-encoder [12–14]. Others adopted self-
supervised pre-training techniques, such as BERT-like mask
prediction [15, 16], contrastive loss [17, 18], and feature clus-
tering [19, 20], to promote downstream E2E ASR tasks.

We focus on self-training [21] or pseudo-labeling (PL) [22],
which has recently been adopted for semi-supervised E2E ASR
and shown to be effective [23–32]. In PL, a teacher (base)
model is first trained on labeled data and used to generate
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pseudo-labels for unlabeled data. A student model is then
trained using both the labeled and the pseudo-labeled data to
obtain better performance than the teacher. To obtain more so-
phisticated pseudo-labels, external language models (LMs) and
beam-search decoding are often incorporated into the labeling
process [23, 29]. Data augmentation is also useful for helping
the student model with training on the pseudo-labeled data [26–
28]. In addition to these extensions of PL, iterative pseudo-
labeling (IPL), where the student model (initialized with the
teacher model) is continuously trained on iteratively updated
pseudo-labels, has shown promising results [25, 26, 30, 31].
In [26], the student model generates pseudo-labels on the fly
from unlabeled data in a self-supervised manner. Pseudo-labels
are refined as the model learns and the model is improved using
the continuously updating pseudo-labels. However, we found
this framework unstable when there is a large amount of un-
labeled data or a domain mismatch between labeled and unla-
beled data, which is likely to be the case in real-world scenarios.
While [30] successfully scales IPL to a large amount of data,
some heuristic controls are required for updating pseudo-labels.

In this paper, we present a simple, efficient, stable, and scal-
able semi-supervised learning algorithm for E2E ASR, referred
to as momentum pseudo labeling (MPL). In MPL, the pseudo-
labels are iteratively updated based on an ensemble of models at
different time steps within a single training process [33]. MPL
consists of online and offline models that interact and learn from
each other, similar to the teacher-student framework in the mean
teacher method [34]. The online model is trained to predict
pseudo-labels generated on the fly by the offline model. The
offline model maintains a momentum-based moving average of
the weights of the online model, which can be regarded as an en-
semble of the online models at different training steps. Through
the interaction between the two models, MPL effectively stabi-
lizes the training with unlabeled data and handles the constant
change in pseudo-labels. The advantages of the proposed MPL
are summarized as follows:
Simple and efficient: The semi-supervised training is per-
formed in a single stage, where pseudo-labels are generated on
the fly and naturally refined without requiring an LM or beam-
search decoding. Our approach is easy to implement and we
show an effective way for controlling the momentum update
which reduces the burden for heuristic tuning.
Stable and scalable: We show the effectiveness of MPL in a
variety of semi-supervised scenarios. Our approach is robust to
variations in the amount of data and domain mismatch severity,
which often pose difficulties in semi-supervised ASR [31].

2. Momentum Pseudo-Labeling
The overall process of the proposed momentum pseudo-
labeling is shown in Algorithm 1. We describe MPL in two
steps: 1) the supervised training process of a base E2E ASR
model, and 2) the proposed semi-supervised training scheme
for improving the model using unlabeled data.
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Algorithm 1 Momentum Pseudo-Labeling
Input:
Dsup,Dunsup . labeled and unlabeled data
A . an ASR model architecture
α . a momentum coefficient

1: Train a base model Pθ with architectureA on Dsup using (2)
2: Initialize an online model Pξ and an offline model Pφ with Pθ
3: repeat
4: for all S ∈ Dsup ∪ Dunsup do
5: Obtain X ∼ S

6: Obtain Y =

{
Y ∼ S (S ∈ Dsup)

Ŷ ∼ Pφ(Y |X) (S ∈ Dunsup)

7: Compute loss L for Pξ(Y |X) with (2) or (4)
8: Update ξ using∇ξL
9: Update φ← αφ+ (1− α)ξ

10: end for
11: until maximum iterations are reached
12: return Pξ, Pφ

2.1. Supervised training of a base model
The objective of E2E ASR is to model a sequence mapping be-
tween a T -length input sequence X=(xt ∈ RD|t=1, . . . , T )
and an L-length output sequence Y = (yl ∈ V|l = 1, . . . , L).
Here, xt is a D-dimensional acoustic feature at frame t, yl
an output token at position l, and V a vocabulary. We focus
on models based on the connectionist temporal classification
(CTC) [3, 35], which has recently been revisited thanks to ad-
vances in neural network architectures [36, 37]. CTC predicts
a frame-level sequence Z = (zt ∈ V ∪ {ε}|t = 1, . . . , T ),
which is obtained by introducing a special blank token ε into
the output sequence Y . Based on a conditional independence
assumption per frame, CTC models the conditional probability
P (Y |X) by marginalizing over all paths (frame alignments) as:

P (Y |X) =
∑

Z∈B−1(Y )

T∏
t=1

P (zt|X), (1)

where B−1(Y ) denotes all possible paths compatible with Y .
Given labeled data Dsup = {(Xn, Yn)|n = 1, . . . , N}, a

base model Pθ with parameters θ is trained with the supervised
objective defined by maximum likelihood estimation of (1):

Lsup(θ) = − logPθ(Yn|A(Xn)), (2)
whereA(·) denotes a data augmentation for improving general-
ization of the model, here SpecAugment [38].

2.2. Semi-supervised training with MPL
The goal of semi-supervised training is to enhance the base
model (trained on labeled data Dsup) by making good use of
unlabeled data Dunsup={Xm|m=N+1, . . . , N+M}. MPL
achieves this goal through an interaction between online and
offline models. Let us define the online and offline models as
Pξ and Pφ, with model parameters ξ and φ, respectively. Both
models are initialized with the trained base model Pθ .

On unlabeled data X ∈Dunsup, the online model is trained
using pseudo-labels Ŷ generated by the offline model:

Ŷ = argmax
Y

Pφ(Y |X), (3)

where argmax is performed based on the best path decoding of
CTC [35]. Specifically, the most probable tokens are selected
at each frame and an output sequence is obtained by suppress-
ing repeated tokens and removing blank symbols. To generate
pseudo-labels with higher quality, beam-search decoding [26]
or an LM [29] are often incorporated into (3), but we used nei-
ther of the techniques. We observed that beam-search decoding
without an LM has little impact on ASR accuracy for CTC-

based models. While exploitation of a strong LM plays an im-
portant role for pseudo-labeling, we adopt the greedy decoding
to keep our approach efficient and avoid over-fitting to LM in-
formation as reported in [30,31]. With unlabeled data Dunsup

and the corresponding pseudo-labels from (3), the objective of
the online model is defined in the same manner as (2):

Lunsup(ξ) = − logPξ(ŶN+m|A(XN+m)), (4)

whereLunsup is maximized via a gradient descent optimization.
Note that in (4), we apply the data augmentation to an unlabeled
input as in [24, 26], aiming for the online model to learn robust
prediction of pseudo-labels from the noisy input. In Sec. 3.4,
we show that data augmentation is an important factor of MPL.

Assuming labeled data Dsup is available during the semi-
supervised process, the supervised loss Lsup(ξ) can be incor-
porated into the training, helping stabilize the online model as
it learns from unlabeled data with Lunsup(ξ). In Sec. 3.5, we
demonstrate that MPL is also effective even when trained solely
on unlabeled data (i.e., trained only with (4)).

The offline model, on the other hand, accumulates weights
of the online model after every update via

φ← αφ+ (1− α)ξ, (5)
a momentum-based moving average with a momentum coef-
ficient α ∈ [0, 1]. This momentum update makes the offline
model evolve more smoothly than the online model. We can
thus control the change in pseudo-labels generated on the fly by
the offline model at each training step. This is important to pre-
vent pseudo-labels from deviating too quickly from the initial
labels generated by the base model and to avoid collapsing to
a trivial solution. Indeed, we empirically observe that training
is prone to collapse (emitting only blank symbols for unlabeled
data) for α = 0.0, in which case the online and offline mod-
els share parameters and the online model is trained with self-
generated pseudo-labels as in [26]. The problem is prominent
when there is a domain mismatch between labeled and unla-
beled data, as is often the case in real-world deployment. We
demonstrate the momentum update’s importance in Sec. 3.5.

After training with MPL, both the online and offline models
can be used for evaluation, although we use the online model as
our default. Their performance is compared in Sec. 3.3.
Tuning the momentum coefficient: Instead of directly tuning
α in (5), we design a novel, more intuitive method for deriving
an appropriate value of α. Based on (5), the parameters of the
offline model after K iterations can be computed as follows:

φ(K) = αKφ(0) + (1− α)
K∑
k=1

αK−kξ(k), (6)

where φ(k) and ξ(k) denote the parameters of each model at the
k-th iteration, and φ(0) = ξ(0) = θ. We here assume that it is
important to retain some influence of the base model to stabi-
lize the pseudo-label generation. As a measure of this influence,
we focus on the term αKφ(0) in (6) and define a weight w of
the base model in φ(K) as w = αK , where we consider K as
the number of iterations (i.e., batches) in a training epoch. As
K can often be in the thousands, small changes in α lead to
huge differences in w (e.g., 0.9993000 � 0.99973000), requir-
ing small adjustments on α for different amounts of training
data. Instead of directly tuning α for the momentum update, we
propose to tune the weight w, which can be regarded as the pro-
portion of the base model retained after a training epoch. Given
w and K, α is calculated as α = e(1/K) logw. By controlling
the update through w, we expect MPL to be less affected by the
amount of training data, which we examine in Sec. 3.5.
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Relationship to prior work: Our approach can be considered
as a variant of the self-ensembling technique [33] for semi-
supervised learning, where a model is trained based on an en-
semble of the models at different training steps. Particularly,
MPL is inspired by and similar to the mean teacher frame-
work [34], in that model ensembling is performed via a moving
average. However, MPL differs from prior work in the follow-
ing perspectives. 1) MPL uses hard (pseudo-)labels for training
with unlabeled data: while soft labels generally contain richer
information for promoting a model training, applying a distilla-
tion loss to CTC-based ASR systems is known to be problem-
atic [39]; as CTC models emit spiky posterior distributions and
predictions are naturally high-confidence, we consider hard la-
bels more suitable for MPL. 2) MPL is a semi-supervised learn-
ing framework for E2E ASR: while most prior works focus on
classification problems, few have introduced self-ensembling
techniques to semi-supervised sequence-to-sequence mapping
problems. 3) MPL applies data augmentation (i.e., SpecAug-
ment) to the input only for training the online model, while the
offline model generates pseudo-labels in inference mode: since
we do not use soft labels in MPL, it is preferable for pseudo-
labels to be accurate; moreover, the online model can learn to
robustly predict pseudo-labels from noisy input, an effective ap-
proach known as consistency training [24, 26, 40].

3. Experiments
3.1. Experimental setup
Data: The experiments were carried out using the LibriSpeech
(LS) [41] and TEDLIUM3 (TED3) [42] datasets. LS con-
sists of utterances from read English audio books and con-
tains 960 hours of training data (split into train-clean-100,
train-clean-360, and train-other-500). TED3 consists
of utterances from English Ted Talks and contains 450 hours
of training data (train-ted3). We used the standard valida-
tion and test sets for each dataset. As input speech features,
we extracted 80 mel-scale filterbank coefficients with three-
dimensional pitch features using Kaldi [43]. We used 1k word-
pieces for tokenizing output texts, which were constructed from
the train-clean-100 texts using SentencePiece [44].
Semi-supervised settings: We used train-clean-100 for
supervised training and treated the other training sets as unla-
beled. Based on the base model trained on train-clean-100
(LS-100), we considered different semi-supervised set-
tings: LS-100/LS-360, an in-domain setting with unlabeled
train-clean-360; LS-100/LS-860, an in-domain setting
with unlabeled train-{clean-360,other-500}; and LS-
100/TED3, an out-domain setting with unlabeled train-ted3.
Training and decoding configurations: All the experiments
were conducted using ESPnet [45]. We used the Transformer
architecture [46] as E2E ASR model, which consisted of a
stack of 12 self-attention layers with the same configurations as
in [47]1. The base model was trained for 150 epochs using the
Adam optimizer [48] with β1 =0.9, β2 =0.98, ε=10−9, and
Noam learning rate scheduling [46]. We used 25,000 warmup
steps and a learning rate factor of 5.0. The MPL training was
iterated for 200 epochs and the online model was trained us-
ing the Adam optimizer with an initial learning rate of 10−3,
β1 = 0.9, β2 = 0.999, and ε = 10−8. For evaluation, a fi-
nal model was obtained by averaging model parameters over
10 checkpoints with the best validation performance. For de-

1Note that the size of our model is relatively small compared to other
state-of-the-art works on semi-supervised ASR [25, 30]. Future work
will look to confirm the effectiveness of MPL on larger models.

coding with an LM, we trained one long short-term memory
(LSTM) layer with 1024 units, using the train-clean-100
transcriptions combined with the external text data provided by
LibriSpeech [41]. The LM was incorporated into decoding via
shallow fusion with a beam-size of 20 and an LM weight of
0.5. For decoding without an LM, we performed the best path
decoding of CTC [35]. We used w = 0.5 for all MPL experi-
ments, leading to α=0.99977 for LS-100/LS360, α=0.99989
for LS-100/LS-860, and α=0.99983 for LS-100/TED3.

3.2. Main results
Table 1 shows results on the in-domain LS settings in terms
of word error rate (WER) and WER recovery rate (WRR) [49].
Topline results are obtained via fully supervised training. Look-
ing at the LS-360 setting results (A*), both standard PL [23] and
proposed MPL led to a significant improvement over the base
model (L0). MPL (A3) outperformed PL (A1) by dynamically
updating pseudo-labels using the offline model, instead of fix-
ing them to those generated by the base model [23]. While PL
could be improved by training on strong pseudo-labels gener-
ated via beam-search decoding with LM (A2), MPL achieved
comparable performance without the help of LM (A3). More-
over, with LM, PL was prone to overfit to the LM training
text as reported in [30, 31]; in contrast, MPL successfully in-
creased model generalization, achieving higher WRR of 81.2%
on the “other” set. We also investigated an effective way for
incorporating an LM into MPL, where PL is first applied to
the base model with strong pseudo-labels (as in A2) and the
pre-trained model is used for better initialization in MPL. With
this pre-training method, MPL achieved the highest WRRs of
72.2%/83.0% (A4), mitigating the over-fitting to the LM. In
the LS-860 setting (B*), MPL again outperformed the baseline.
While standard PL was not as effective as in the LS-360 setting
in terms of WRR (B1,B2 vs. A1,A2), MPL successfully recov-
ered the same rate of errors (B3,B4 vs. A3,A4), demonstrating
its scalability with respect to the amount of unlabeled data.

Table 2 lists MPL results on the out-domain TED3 setting.
Standard PL resulted in a modest improvement with WRR of at
most 49.1% (C1,C2). In contrast, the gain was more substantial
for MPL with WRR of 80.8% (C3,C4), indicating MPL is ca-
pable of efficiently adapting the base model to another domain.
For PL, due to the domain mistmach, the advantage of utilizing
the LM (trained on LS transcriptions) was smaller compared to
the in-domain settings (C2 vs. A2,B2). MPL, however, suc-
ceeded in making use of the LM via the pre-training trick (C4).

In all experiments, decoding with an LM further improved
performance, with MPL again achieving high WRR.

3.3. Online model vs. offline model
Contrary to previous work [34], we adopted the online model
for final evaluation. When we did not use the checkpoint aver-
aging technique [46], the offline model gave better performance
than the online model (e.g., 9.4%/22.7% vs. 9.8%/24.0% on
dev. sets in the LS-360 setting). Since the offline model is an av-
erage of the online models over the training (cf. (5)), the offline
model naturally benefited from the model ensembling. How-
ever, with checkpoint averaging, both of the models were im-
proved and the performance gap was reduced to almost none
(e.g., 9.4%/22.5% vs. 9.4%/22.4% on dev. sets in the LS-360
setting). We used the slightly better online model for evaluation.

3.4. Importance of data augmentation
When applying MPL to the base model (L0 in Table 1) with-
out SpecAugment, WRRs dropped to 39.7%/48.1% compared
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Table 1: Word error rate (WER) [%] and WER recovery rate (WRR) [%↑] on in-domain LibriSpeech (LS) settings. The results are
divided into two sections, depending on whether the LM with beam-search decoding was applied in the final evaluation or not.

Decoding without LM Decoding with LM

Dev WER [%] Test WER [%] Test WRR [%↑] Dev WER [%] Test WER [%] Test WRR [%↑]

Setting Method Init. clean other clean other clean other clean other clean other clean other

LS-100 L0 baseline – 13.2 31.1 13.5 32.4 0.0 0.0 8.8 23.6 9.1 24.5 0.0 0.0

LS-100
/ LS-360

A1 PL [23] L0 10.5 25.2 10.7 25.8 45.3 54.5 7.3 18.7 7.6 19.4 39.2 52.4
A2 PL [23] L0 + LM 9.1 23.4 9.4 23.9 66.5 70.0 7.0 18.2 7.1 18.6 51.3 61.4
A3 MPL L0 9.4 22.4 9.6 22.6 63.6 81.2 7.0 17.2 7.2 17.5 48.7 72.3
A4 MPL A2† 8.7 22.0 9.0 22.4 72.2 83.0 6.5 16.9 6.8 17.1 58.5 76.4

A5 topline L0 6.7 20.2 7.3 20.3 100.0 100.0 4.8 15.0 5.1 14.9 100.0 100.0

LS-100
/ LS-860

B1 PL [23] L0 10.4 24.3 10.7 25.0 37.0 41.4 7.3 18.0 7.4 18.4 34.4 43.5
B2 PL [23] L0 + LM 8.7 21.4 8.9 21.9 59.4 58.5 6.6 16.6 6.9 17.0 45.6 52.8
B3 MPL L0 9.0 18.0 9.2 18.1 56.0 80.0 6.9 13.7 7.0 14.1 44.2 73.7
B4 MPL B2† 8.2 17.5 8.4 17.6 66.2 83.0 6.3 13.5 6.4 13.7 55.0 76.8

B5 topline L0 5.7 14.4 5.8 14.6 100.0 100.0 4.1 10.5 4.3 10.4 100.0 100.0

†We used the model from 100 epochs and applied MPL for 100 epochs so that the total number of training epochs matches that of the other methods.

Table 2: WER [%] and WRR [%↑] on out-domain TEDLIUM3 (TED3) setting.

Decoding without LM Decoding with LM

Setting Method Init. Dev WER [%] Test WER [%] Test WRR [%↑] Dev WER [%] Test WER [%] Test WRR [%↑]

LS-100 L0 baseline – 32.5 33.2 0.0 26.8 26.8 0.0

LS-100
/ TED3

C1 PL [23] L0 26.8 26.0 35.6 22.1 20.9 34.6
C2 PL [23] L0 + LM 24.4 23.2 49.1 21.0 20.1 39.2
C3 MPL L0 18.8 17.6 76.3 16.8 15.5 65.9
C4 MPL C2 18.2 16.7 80.8 16.2 14.9 69.6

C5 topline L0 12.7 12.8 100.0 10.0 9.6 100.0

(a) LS-100 / LS-360 (b) LS-100 / LS-860

(c) LS-100 / TED3 (d) LS-100 / TED3 (unsup)

Figure 1: Influence of momentum update weight w on WER.

to the results with SpecAugment (A3). Note that, for the exper-
iment without SpecAugment, the WRRs were calculated based
on a topline model trained without the augmentation. Without
SpecAugment, we observed that the MPL training converged
earlier and MPL was less effective.

3.5. Effectiveness of w for tuning the momentum update

Figure 1 shows the model performance depending on the weight
w used to calculate α in the momentum update (5). Here, we
observed a similar trend among the curves in different semi-
supervised settings (Figs. 1(a), 1(b), and 1(c)). The perfor-
mance degraded as w was set closer to 0.0. When w = 0.0,
which is a similar approach to [26], the training was likely to be
unstable and failed under the conditions in Figs. 1(a) and 1(c),
indicating the importance of retaining parameters from the base
model. However, depending too much on the base model (i.e.,
settingw closer to 1.0) also worsened performance, since larger
w slows down the offline model’s progress, causing MPL to be-
come more like standard PL [23]. Fig. 1(d) shows results under
an extreme condition, where not only a domain mismatch exists
between the base model and unlabeled data but labeled data is

Table 3: Comparison of test WER [%] between iterative PL and
MPL in each setting. PL# denotes PL at the #-th iteration.

Setting Test data PL1 PL2 PL3 PL4 MPL

LS-100 / LS-360 test-clean 11.3 10.5 10.2 9.9 9.6
test-other 27.3 25.5 24.6 24.2 22.6

LS-100 / LS-860 test-clean 11.1 10.3 9.7 9.4 9.2
test-other 25.6 23.2 21.9 20.7 18.1

LS-100 / TED3 test-ted3 26.3 23.5 22.2 21.3 17.6

not used during the semi-supervised process (i.e., training with
(4) only). The performance was more sensitive to the change in
w than in the other settings, but the overall trend was similar.

Overall, the proposed tuning method effectively controlled
the momentum update in all settings. It provides a more intu-
itive guide for tuning α, taking the amount of data into account.
Based on the validation results mainly on the LS-860 and TED3
settings, we set w = 0.5 for all the semi-supervised conditions.

3.6. Comparison with iterative pseudo-labeling
In Table 3, we list results comparing MPL with a simple itera-
tive PL (IPL) method similar to [25,30]. In IPL, the base model
was continuously trained on pseudo-labels which were updated
at intervals of 50 epochs. For a fair comparison, the update was
performed four times to match the total number of epochs to that
of MPL (i.e., 200 epochs). The results show the effectiveness
of IPL, as performance gradually improved with the iterations.
However, MPL still outperformed the final round of PL, indi-
cating MPL is more effective at training with unlabeled data.

4. Conclusions
This paper proposed MPL, momentum pseudo-labeling for
semi-supervised ASR. Experimental results on various semi-
supervised settings demonstrated its effectiveness, achieving
clear improvements over standard pseudo-labeling and iterative
pseudo-labeling. Moreover, MPL was shown to be effective
independently of the amount of unlabeled data or domain mis-
match. Future work includes applying filtering techniques [31]
and introducing multiple hypotheses [32] in the MPL process.
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