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Abstract
Speech separation has been well developed, with the very suc-
cessful permutation invariant training (PIT) approach, although
the frequent label assignment switching happening during PIT
training remains to be a problem when better convergence speed
and achievable performance are desired. In this paper, we pro-
pose to perform self-supervised pre-training to stabilize the la-
bel assignment in training the speech separation model. Exper-
iments over several types of self-supervised approaches, sev-
eral typical speech separation models and two different datasets
showed that very good improvements are achievable if a proper
self-supervised approach is chosen.
Index Terms: Speech Enhancement, Self-supervised Pre-train,
Speech Separation, Label Permutation Switch

1. Introduction
Supervised learning has been extremely successful in recent
years in machine learning, except the huge quantity of labeled
data needed causes the major problem. On the other hand,
self-supervised learning tries to train the model using only
unlabeled data, such as reconstructing the original data from
some transformed representations or leveraging some parts of
data to predict the other parts, therefore becomes highly attrac-
tive. In natural language processing (NLP) [1, 2, 3], BERT
[1] learned powerful representations by self-supervised pre-
training to encode contextual information. In computer vi-
sion (CV) [4, 5, 6, 7, 8], SimCLRv2 [5] outperformed the
previous state-of-the-art on ImageNet by self-supervised pre-
training. Examples in NLP and CV have shown self-supervised
pre-trained models are more label-efficient than previous semi-
supervised training methods. In the speech processing area,
self-supervised learning also showed great advantages when la-
beled data are limited [6, 9, 10, 11, 12, 13, 14]. CPC [6] and
APC [12] learned to extract useful representations for speech
using a probabilistic contrastive loss to capture information for
predicting future samples. Wav2vec [9] benefited from the idea
of CPC and outperformed the state-of-the-art in character-based
ASR with representations learned from 1000 hours of unlabeled
speech. Wav2vec 2.0 [10] further showed that 10 minutes of la-
beled data were enough for training an ASR system with 53k
hours of unlabeled data. TERA [14] pre-trained a Transformer
model with a BERT-like objective. The learned representations
were shown to be robust for a wide range of downstream tasks.
The model could even outperform supervised learning when
fine-tuned with only 0.1% of labeled data.

On the other hand, speech separation has long been a
fundamental problem towards robust speech processing un-

der the real-world acoustic environment, in which the consid-
ered speech signal is inevitably disturbed by some additional
signals produced by other speakers. In general, deep learn-
ing techniques for single-channel speech separation can be di-
vided into two categories: time-frequency (T-F) domain meth-
ods and end-to-end time-domain approaches. Based on T-F
features obtained with short-time Fourier transform (STFT), T-
F domain methods separate the T-F features for each source
and then reconstruct the source waveforms by inverse STFT
[15, 16, 17, 18, 19]. Time-domain approaches then directly
process the mixture waveform using an encode-decoder frame-
work, and this line of research has achieved significant progress
in recent years [20, 21, 22, 23]. But both the T-F domain and
time-domain approaches suffer from the label ambiguity prob-
lem when evaluating the reconstruction errors by matching the
ground truths with the estimated signals. Permutation-invariant
training (PIT) [24] has been very useful to handle this problem
by dynamically choosing the best label assignment each time.
However, the very unstable label assignment during the early
training stage in PIT was shown to lead to slower convergence
and lower performance [25].

In this paper, we made the following contributions:

• We point out the self-supervised pre-training is also ex-
tremely helpful to speech separation.

• We show the self-supervised pre-training can effectively
stabilize the label assignment in PIT during training
speech separation models, and the significantly reduced
label assignment switching during training directly lead
to faster convergence and improved performance.

• The proposed approach is shown to be equally useful to
all different separation models over different datasets,
because PIT has been widely used across almost all
speech separation tasks.

2. Label ambiguity problem and
permutation invariant training (PIT)

2.1. Label ambiguity problem

In single-channel speech separation, several speech signals are
mixed: y =

∑N
n=1 xn, where N is the number of sources; the

goal is to extract all individual speech signals {xn}Nn=1 from
the mixed signal y. For simplicity, we consider two sources
only, y = x1 + x2, and employ a model with two outputs, o1
and o2. There exist two possible label assignments: (1) o1 re-
gresses to x1 and o2 regresses to x2, or (2) o1 regresses to x2

and o2 regresses to x1. These two label assignments lead to two
different loss functions to be used in model training. There are

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-7633056



N ! possible label assignments for N ≥ 2. Incorrect label as-
signments naturally force the separation model to be updated to
wrong direction, or even possibly destroy what has been learned
before.

2.2. PIT and label assignment switching problem

Permutation invariant training (PIT) [24] was proposed to solve
the above problem. Every time when the model parameters
are to be updated, all possible label assignments as mentioned
above are used to calculate the regression loss, and the one with
minimum loss is chosen to update the model. Although such
a dynamic label selection principle sounds reasonable, the se-
lected labels can be very different for different training epochs
giving a very rugged training path. A soft version of PIT was
proposed to relax the label assignment switching problem be-
tween epochs [26], but restricted to those with L2-based objec-
tive functions only. A cascaded training strategy was then pro-
posed [25], in which a good label assignment was first obtained
with PIT, based on which the model parameters were better up-
dated, to be used as a good initialization for the third stage of
PIT training. This approach properly reduced the assignment
switching during training, but made the training time several
times longer compared to the original PIT.

3. Proposed training strategies
Considering the unstable label assignment problem during
training as mentioned above, plus the fact that self-supervised
pre-training was shown to be able to assist the model to learn
structural information from large-scale unlabeled data and ben-
efit in boosting the following training procedures [1, 2, 3, 4, 5, 6,
7, 8], we propose a self-supervised pre-training and fine-tuning
framework as below.

3.1. Pre-train

In this work, we consider three different self-supervised ap-
proaches for pre-training here: speech enhancement (SE),
Masked Acoustic Model with Alteration (MAMA) used in
TERA [14], and continuous contrastive task (CC) used in
wav2vec 2.0 [10]. Speech enhancement (SE) simply tries to
reconstruct the original signal when noise is added to the input.
MAMA is a masked reconstruction task, where the input audio
is disturbed by noise with some parts randomly picked up and
masked, and the model is required to reconstruct the clean audio
of the masked parts. CC is a contrastive task; we mask the spans
of the input audio features, and the model is trained to predict
the masked spans of features correctly. Fig. 1(a) (colored part)
shows the flowchart of pre-training, where the input signal is
probably mixed with random noise and masked, and the model
is to reconstruct the original clean source.

3.2. Fine-tune

After pre-training, the model is then fine-tuned with the normal
separation training objective to produce the desired individual
signals. All model parameters for fine-tuning are loaded from
the pre-trained model as long as available, but the parameters
used to generate specific output channels are re-initialized, as
shown in Fig. 1(b). PIT is performed as usual.

3.3. Multi-task learning

To verify that whether the proposed framework really benefits
from the ”pre-train then fine-tune” procedure, jointly learning

from the self-supervised training plus separation in a multi-task
learning framework is also tested as a baseline for comparison,
as in Fig. 1(c).

4. Experimental setup
4.1. Dataset

In this work, speech separation was trained and evaluated on
WSJ0-2mix [18] and Libri2Mix [27] train-100 set, and
self-supervised approaches were trained using Libri1Mix [27]
train-360 set [27]. The WSJ0-2mix dataset was derived
from the WSJ0 data corpus [28]. The training and valida-
tion data contained two-speaker mixtures generated by ran-
domly selecting utterances from different speakers in the WSJ0
si tr s set, and the test set was similarly generated us-
ing utterances from unseen speakers in WSJ0 si dt 05 and
si et 05 set. Libri2Mix is created based on the Librispeech
dataset [29] with a similar generating procedure as WSJ0-2mix.
Libri2Mix train-100 set used speakers randomly selected
from the train-clean-100 set of Librispeech, while the
dev and test set used the utterances from unseen speakers in
the dev and test sets of Librispeech respectively. Libri1Mix
train-360 dataset was created with the same settings as
Libri2Mix, while only one speaker was randomly selected from
the train-clean-360 set of Librispeech, and mixed with a
random noise sampled from WHAM! [30]. The speaker groups
of Libri1Mix train-360 and Libri2Mix train-100 set
were disjoint.

4.2. Implementation details

The proposed self-supervised pre-training can be used with any
separation model, and the study here was mainly focused on
the effectiveness of pre-training. In this work, we choose Conv-
TasNet [20] as our main baseline model, DPRNN [21] and DPT-
Net [22] were also used in later experiments. All experiments
were implemented with Asteroid [31], and the detailed training
configurations are in the repository1.

The model was trained with three different strategies for
comparison in our experiments: from scratch, pre-trained then
fine-tune (PT-FT), and multi-task training. We purposely let the
three strategies have the same number of update steps in train-
ing the separation task for fairness. Separation performance
was evaluated in scale-invariant signal-to-noise ratio improve-
ment (SI-SNRi) [32] and signal-to-distortion ratio improvement
(SDRi) [33].

5. Experimental results
5.1. Comparison between the self-supervised pre-training
tasks

We first wished to find out which self-supervise pre-training
approach was more helpful to the separation task. Speech
enhancement (SE), Masked Acoustic Model with Alternation
(MAMA) and continuous contrastive task (CC) as described in
Section 3.1 were tested. We used Conv-TasNet as our separa-
tion model. After pre-trained with SE, MAMA and CC respec-
tively, we fine-tuned the obtained models for 100 epochs for the
speech separation task. The pre-training tasks were all trained
on Libri1Mix train-360 set, and the fine-tuning task was
trained on WSJ0-2mix. The results listed in Table 1 showed

1https://github.com/SungFeng-Huang/
SSL-pretraining-separation/tree/main/local
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Figure 1: The flowchart for the proposed training framework: (a) pre-training, (b) fine-tuning after pre-training, and (c) multi-task
training for comparison. Gray blocks indicate the corresponding parts are not used during training.

Table 1: Comparison between different self-supervised pre-
training approaches when fine-tuned with Conv-TasNet in SI-
SNRi and SDRi. The first row is for training from scratch.

Pre-training task SI-SNRi (dB) SDRi (dB)

– 15.6 15.8

SE 16.3 16.5
MAMA [14] 16.2 16.5

CC [10] 15.5 15.8

that both SE and MAMA led to significant improvement, but
not CC. Note that both SE and MAMA had input speech dis-
turbed by noise, while the model was to reconstruct the whole
utterance (SE) or only the masked parts (MAMA), as mentioned
in Section 3.1. So we may conclude that approaches trying to
reconstruct the clean input speech from the noisy and/or masked
one are probably more effective for pre-training speech separa-
tion tasks. A possible explanation may be here SE and MAMA
already learned to extract from disturbed signals the information
about each individual speaker, so all the following Conv-TasNet
model needed to learn is to separate the extracted information
into two channels, therefore the learning process was more sta-
ble and efficient. This is why in the following tests we only used
speech enhancement (SE) for self-supervised pre-training.

5.2. Effectiveness of pre-training and fine-tuning (PT-FT)

Table 2 shows the results of three different training strategies:
from scratch, pre-training and fine-tuning (PT-FT) and multi-
task, with the latter two using speech enhancement (SE) for self-
supervised learning, all trained with Conv-TasNet as the main
separation model. As shown, both pre-training and multi-task
learning improved the separation model on both WSJ0-2mix
and Libri2Mix, while pre-training improved more significantly
(0.7 - 1.0 dB improvements for PT-FT (SE) compared to ”from
scratch” v.s. 0.1 - 0.5 dB for multi-task (SE)). A good explana-

Table 2: Comparison between different training strategies for
Conv-TasNet on two datasets (WSJ0-2mix and Libri2Mix) in SI-
SNRi (dB) and SDRi (dB). PT-FT: pre-trained then fine-tune.
SE: with speech separation for self-supervised. Number in the
parentheses are the improvements over ”from scratch”.

Corpus Training strategy SI-SNRi SDRi

Libri2Mix
from scratch 13.2 13.6
PT-FT (SE) 14.1 (0.9) 14.6 (1.0)

multi-task (SE) 13.7 (0.5) 14.1 (0.5)

WSJ0-2mix
from scratch 15.6 15.8
PT-FT (SE) 16.3 (0.7) 16.5 (0.7)

multi-task (SE) 15.7 (0.1) 16.0 (0.2)

tion for this is that, as mentioned above, the pre-trained model
already learned to extract from disturbed signals the information
about the individual target speakers, so the following separation
model could focus on the construction of the two masks, for the
two sources. In contrast, for multi-task learning, the two differ-
ent tasks of speech enhancement and speech separation were
learned jointly, while sharing the knowledge learned for the
two very different tasks may not be easy. This further showed
the effectiveness of learning the two different tasks sequen-
tially instead of jointly (self-supervised for enhancement then
fine-tuning for separation). Also noted that since the corpus
used to train speech enhancement was Libri1Mix train-360
set, which was closer to Libri2Mix train-100 set but far-
ther from WSJ0-2mix, which may be the simple reason why
the results in Table 2 on Libri2Mix (upper half) showed more
improvements than those on WSJ0-2mix (lower half).

Validation SI-SNR results during training are reported in
Figure 2(a)(b) for Libri2Mix and WSJ0-2mix respectively. As
shown in the figure, improvements for multi-task learning grad-
ually decreased while training on Libri2Mix and were nearly
hard to see on WSJ0-2mix. The proposed pre-trained model

3058



Figure 2: (a)(b) validation SI-SNR (dB) and (c)(d) percentage of label assignment switches in total training data (%) at each epoch on
two datasets Libri2Mix and WSJ0-2mix respectively. In (d), the green bars reach 89% at around epoch 40.

led the baselines all the way and achieved the final result of
the baselines in only 37 epochs for Libri2Mix and 66 epochs
for WSJ0-2mix, which are about one-third to two-thirds of the
baseline training epochs. Figure 2(c)(d) show the percentage of
label assignment switches in total training data. Here we can
see only the proposed pre-training with speech enhancement
(orange bars) significantly reduced label assignment switches,
while multi-task learning (green bars) not only failed to re-
duce the label assignment switches but sometimes increased
them. Moreover, training from scratch (blue bars) and multi-
task learning (green bars) sometimes got very high switching
percentages (e.g., roughly 15% - 35 % of the label assignments
were often switched over for both training from scratch and
multi-task training in Figure 2(c), and most label assignments
were switched at epoch 40 for multi-task training in Figure 2(d).

5.3. More Separation models tested on WSJ0-2mix

More test results on different separation models with different
batch sizes (BS), utterance length (L), with pre-training (PT) or
from scratch are listed in Table 3, all trained and evaluated on
WSJ0-2mix. The first rows (a)(d)(g)(l) for each model are those
reported in their original papers. For speeding up the experi-
ments, Conv-TasNet and DPRNN (Sec. (I)(II) in Table 3) were
trained with shorter utterance length (3 or 2 sec) and a larger
batch size (24) with 200 epochs, which caused the slightly
worse DPRNN results than those previously reported [21]. In
addition to those for Conv-TasNet discussed previously, the pre-
trained DPRNN (Sec. (II)) was improved significantly, even
achieving comparable performance as the reported one (rows
(f) v.s. (d)(e)), although with worse performance from scratch
due to the hyper-parameters. DPTNet (Sec. (III)) was trained
with batch size 1 and 4 with 100 epochs to speed up the training
process. Setting batch size 4 instead of 1 gave 0.3 dB worse
performance (rows (h) v.s. (j)). Nevertheless, the pre-trained
DPTNet made up the gap, even doing slightly better (rows (i)
v.s. (j)). Compared to the current state-of-the-art (Sandglas-
set [23]), the pre-trained DPTNet with a batch size 1 actually

Table 3: Different separation models on WSJ0-2mix in SI-SNRi
(dB) and SDRi (dB). BS: batch size. L: utterance length (sec).
PT: pre-training, ”–” means training from scratch. The first
rows (a)(d)(g)(l) for each model are the reported results from
original papers. The blank indicates unknown. *Row (g) are
actually SI-SNR and SDR.

Model BS L PT SI-SNRi SDRi

(a) 4 – 15.3 15.6
(b) 24 3 – 15.6 15.8
(c)

(I)
Conv-TasNet 24 3 SE 16.3 16.5

(d) 4 – 18.8 19.0
(e) 24 2 – 17.0 17.3
(f)

(II)
DPRNN 24 2 SE 18.6 18.9

(g) 4 – 20.2* 20.6*
(h) 4 4 – 20.4 20.6
(i) 4 4 SE 20.8 21.0
(j) 1 4 – 20.7 20.9
(k)

(III)DPTNet

1 4 SE 21.3 21.5
(l) (IV) Sandglasset 4 – 21.0 21.2

achieved the new state-of-the-art ((k) v.s. (l)).

6. Conclusion
In this paper, we propose to use self-supervised pre-training to
stabilize the label assignment for speech separation. We show
that pre-training with speech enhancement offers better training
and consistently improves the separation performance across
all different separation model architectures over two different
datasets.
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