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Abstract 

Convolutional neural networks (CNNs) exhibit good 
performance in low-complexity classification with fixed-
length acoustic scenes. However, previous studies have not 
considered variable-length acoustic scenes in which 
performance degradation is prevalent. In this regard, we 
investigate two novel architectures—convolution-augmented 
transformer (Conformer) and differentiable neural computer 
(DNC). Both the models show desirable performance for 
variable-length data but require a large amount of data. In 
other words, small amounts of data, such as those from 
acoustic scenes, lead to overfitting in these models. In this 
paper, we propose a shallow convolution-augmented 
Transformer with a differentiable neural computer (shallow 
Conformer-DNC) for the low-complexity classification of 
variable-length acoustic scenes. The shallow Conformer-DNC 
is enabled to converge with small amounts of data. Short-term 
and long-term contexts of variable-length acoustic scenes are 
trained by using the shallow Conformer and shallow DNC, 
respectively. The experiments were conducted for variable-
length conditions using the TAU Urban Acoustic Scenes 2020 
Mobile dataset. As a result, a peak accuracy of 61.25% was 
confirmed for shallow Conformer-DNC with a model 
parameter of 34 K. It is comparable performance to state-of-
the-art CNNs. 
Index Terms: acoustic scene classification, low-complexity, 
variable-length, Conformer, differentiable neural computer 

1. Introduction 
Acoustic scene classification (ASC) is the task of predicting 
specific locations of sound events and auditory information [1]. 
Recent studies have shown that the performance of ASCs has 
dramatically improved owing to the emergence and use of 
deep learning technology. Convolutional neural networks 
(CNNs) have mainly been used to convert acoustic signals into 
spectrograms and then for training them [2–6].  CNNs can 
learn the correlations of local information of the input. In 
particular, the appearance of residual learning has the training 
of CNNs without increasing parameters [7]. These residual 
CNNs greatly contributed to the performance improvement of 
ASCs [8–11]. 

McDonnell et al. proposed residual CNNs using 
spectrogram separation to the classification of fixed-length 
acoustic scenes recorded using multiple devices [10]. The 
frequency domains of the spectrogram were separated in half 
for training the frequency response of each device. The 
generated high-frequency spectrogram and low-frequency 
spectrogram were then trained using each residual CNN. It 
showed generalization performance for test cases recorded 

with unknown devices. However, this study did not cover the 
low-complexity and variable-length issues. 

Hu et al. proposed MobNet and small-FCNN for low-
complexity classification of fixed-length acoustic scenes [11]. 
Data augmentation methods such as mixup [12] and spectrum 
augmentation [13] were also used in the training. The MobNet 
is a residual CNN derived from MobileNetV2 [14], which has 
the low-complexity and high accuracy. Small-FCNN is also a 
residual CNN that uses fully connected layers and channel 
attention. These studies showed that the models exhibited 
good performance under low-complexity conditions, but did 
not cover the variable-length issue. 

In the ASC under low-complexity conditions, the variable-
length issue disturbs the generalization performance. In 
particular, the performance of test cases with long-length data 
is degraded for models trained with short-length data. In this 
regard, we focus on two novel architectures—convolution-
augmented Transformer (Conformer) [15], and differentiable 
neural computer (DNC) [16]. The Conformer is a model in 
which the CNN and Transformer [17] are combined. It has 
been exhibited good performance in automatic speech 
recognition and continuous speech separation for variable-
length [15,18]. The Conformer can learn the local and global 
dependencies of an acoustic signal simultaneously by using 
convolution and self-attention mechanisms. Moreover, the 
Conformer has the advantage of training in the short-term 
context. However, the longer the length of the training data, 
the lower is the efficiency of self-attention. 

The DNC can be used to compensate for the limitations of 
the Conformer. The DNC showed performance improvement 
compared to recurrent neural networks (RNNs) in the 
inference task for variable-length [16,19–22]. The DNC 
consists of a controller and an external memory. Since DNC 
can store long sequence information to external memory, it 
has the advantage of training the long-term context. However, 
it is difficult to train high-complexity models such as the 
Conformer and DNC using small amounts of data. The 
acoustic scene data are mostly composed of small amounts of 
less than 100 hours [23,24]. Since these data are not enough 
for training both models, an overfitting problem can occur. 

In this paper, we propose a shallow convolution-
augmented Transformer with a differentiable neural computer 
(shallow Conformer-DNC) for the low-complexity 
classification of variable-length acoustic scenes. The previous 
Conformer and DNC are modified for training with small 
amounts of acoustic scene data. Then, the two models were 
combined into a one-pass training. The proposed shallow 
Conformer-DNC can simultaneously learn the short-term and 
long-term context of variable-length acoustic scenes. 

We will introduce the previous Conformer and DNC in 
Section 2. In Section 3, we describe the proposed shallow † Corresponding author 
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Conformer-DNC and show the results in Section 4. Finally, 
conclusions are made in Section 5. 

2. Previous Works 

2.1. Conformer 

The Conformer is one of the powerful deep learning models 
using convolution and self-attention mechanisms [15]. As 
shown in Figure 1, the Conformer consists of several pre-
processing layers and  of Conformer blocks. The 
subsampled feature is generated using several pre-processing 
layers—SpecAugment [13], convolution subsampling, linear, 
and dropout.  

 

 
Figure 1: Structural overview of the Conformer. 

Then, the feature is fed into the Conformer blocks. The 
Conformer block consists of two feed-forward modules, a 
multi-headed self-attention module, a convolution module, 
and layer normalization. Residual connections are applied 
between each module. Then, the output feature is generated by 
using layer normalization. 

2.2. Differentiable neural computer 

The DNC is one of the memory-augmented deep learning 
models using an attention mechanism [16]. Figure 2 is a 
structural overview of the DNC, which consists of a controller 
and an external memory. The controller is a deep learning 
model, such as RNN or CNN. The external memory is 
determined by the number of memory addresses and the 
dimensionality of the memory vector.  

 

 
Figure 2: Structural overview of the DNC. 

An external input is used as an input of the controller. An 
interface vector and a controller output vector are generated 
from the controller. The interface vector determines an index 
of the external memory address accessed at time step  to 
perform the read and write operation. The controller output 
vector is equal to the output vector of the highest hidden layer 
in the controller. After the read and write operation, read 
vectors are generated. Read vectors are generated with the 
attention mechanism. These vectors are projected into the 
dimension of the controller output vector. An external output 
is generated from the addition of projected read vectors and 
the controller output vector. 

3. Shallow Convolution-Augmented 
Transformer with Differentiable Neural 

Computer 

3.1. Shallow Conformer 

The proposed shallow Conformer is derived from the 
previous Conformer encoder [15]. First, a sub-sampling block 
is applied to the variable-length input feature 

 of length  , as shown in 
Figure 3. The sub-sampling block consists of convolution 
subsampling, linear transformation, and dropout. In the 
convolution subsampling operation, the quarter areas of the 
input feature are extracted by using two convolution and 
nonlinear activations. Then, linear transformation and dropout 
regularization are applied to subsampled feature 

. 
Then, subsampled feature  is fed into the several 

Conformer blocks (in this paper, we fix the number of 
Conformer blocks to two). The Conformer blocks consist of 
two feed-forward modules, a multi-headed self-attention 
module, a convolution module, and layer normalization. 
Except for layer normalization, each module is connected 
residually. In particular, half weights of the feed-forward 
module are used in the residual connections.  

In the Conformer block, the feature is generated passing 
through using the first feed-forward module. After the 
application of pre-normalization to input , linear 
transformation and swish activation [25] are applied to it. 
Following this, two dropouts and linear transformations are 
applied. Then, feature  is generated after passing through the 
multi-headed self-attention module. Relative positional 
encoding is then applied to generalize the various input 
lengths for self-attention [15]. After this, dropout is applied for 
regularization.  

Next, feature  is generated through the convolutional 
module. After applying pre-normalization to input , point-
wise convolution and gated linear unit activation (GLU) [26] 
are applied. Then, 1D-depthwise convolution and swish 
activation are applied, which is followed by second point-wise 
convolution and dropout. Then, after passing through the 
second feed-forward module, layer normalization is applied, 
and the output feature  
of length , are generated. The above process can be 
mathematically summarized as follows: 
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3.2. Shallow differentiable neural computer 

The output feature  generated by the shallow Conformer is 
used as an input vector to the shallow DNC. The proposed 
shallow DNC consists of a gated recurrent unit (GRU)-based 
controller and external memory. Its external memory can be 
represented as , where  is the number of memory 
addresses, and  is the dimensionality of the memory vector. 
An external input is a concatenated vector containing an input 
vector  at time step  and read vectors  at time step 

 . The  was generated using a read 
operation. It is defined as 

, (5) 
where  and  are the transposed external memory and 
i-th read attention weighting vector at time step , respectively. 
Before the read operation, the controller performs the write 
operation, which is defined as 

, (6) 
where  is an  matrix with all elements equal to one. 

 is the write attention weighting vector at time step ,  
is the transposed erase vector at time step , and  is the 
transposed converted external input at time . 

To generate , content-based and temporal linking 
addressing was used [21]. The content-based addressing 
calculates the cosine similarity between every memory vector 
and a key vector generated by the controller. Temporal linking 
addressing uses a temporal link matrix to determine the 
memory vector to be written after or before the read operation 
in the previous time step. To generate , content-based 
addressing and memory-allocation-based addressing have 
been used [21]. Memory-allocation-based addressing uses 
usage vectors to determine the degree of usage in each 
memory vector. 

Then, read vectors are transformed to the dimension of the 
controller output vector. An external output is generated from 
the element-wise additions of transformed read vectors and the 
controller output vector. Finally, the external output of the 
DNC is transformed to the number of classes using global 
average pooling (GAP), and softmax is applied. 

4. Experiments 

4.1. Dataset 

We used the development dataset of TAU Urban Acoustic 
Scenes 2020 Mobile [24]. (The evaluation dataset was not 

published). The recordings in the dataset were collected from 
10 acoustic locations—airport, indoor shopping mall, metro 
station, pedestrian street, public square, street with a medium 
level of traffic, traveling by tram, traveling by bus, traveling 
by an underground metro, and an urban park. Also, 3 real 
devices and 6 simulated devices were used for the dataset. 

The total number of recordings is 23,040. The dataset is 
split into training and test set with a 70% ratio as a cross-
validation setup (some recordings are not used for training/test 
split). The number of training and test set is 13,962 and 2,970, 
respectively. The recordings using 3 simulated devices are 
included only in the test set. The duration of each training and 
test recordings is fixed at 10 sec. The sampling rates are fixed 
at 44.1 kHz, 24-bit resolution, and mono channel. 

4.2. Experimental configurations 

Table 1: Model hyperparameters for the proposed 
shallow Conformer-DNC (C, D, and EM refer to 
Conformer, DNC, and external memory, respectively). 

Description 
Shallow 

Conformer-
DNC (S) 

Shallow 
Conformer-
DNC (M) 

Shallow 
Conformer-

DNC (L) 
Params (K) 34.0 75.1 132.3 
C-Blocks 2 2 2 
C-Dim 16 24 32 
C-Att. Heads 4 4 4 
C-Conv. Kernels 7 13 19 
D-Layers 1 1 1 
D-GRU-Dim 16 24 32 
D-EM-Addresses 16 24 32 
D-EM-Dim 16 24 32 

 

For each input acoustic signal, a short-time Fourier transform 
with 2048 FFT points was performed with a hop length of 
1024 samples. We then extracted a 128-dimensional log-Mel 
spectrogram. The number of time bins varied according to the 
duration of the input acoustic signal, and a feature of 

 was generated (i.e., for 10 sec, 
a feature of  was generated.) 

We trained the proposed models using the Adam optimizer 
with , , an initial learning rate of , and 
a weight decay of . Also, we used two types of learning 
rate scheduler; one was a transformer learning rate scheduler 
[15] with 800 warm-up steps and a peak learning rate of 

. (  is the dimension of the Conformer), and the 
other was a learning rate scheduler [27] that reduced the 
learning rate in the case of validation loss plateaus. We also 
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trained the proposed model using a standard cross-entropy loss 
function with a batch size of 512 and epoch 200.  

We designed three models with different hyperparameters, 
as presented in Table 1. Depending on the model parameter 
size, the models were defined as small (S), medium (M), and 
large (L). Among them, the small model with the lowest 
model parameter was mainly used for the experiments. 

4.3. Experimental results 

Four experiments were performed using the proposed model. 
In the first experiment, the performance of the proposed 
models using three hyperparameters was evaluated and the 
results are presented in Table 2. As can be seen from the table, 
the shallow Conformer (S) showed 52.56% accuracy with 24.1 
K model parameters, whereas the shallow Conformer-DNC (S) 
showed 52.73% accuracy with 34 K model parameters. 

Table 2: Experimental results on proposed models 
using three hyperparameters. 

Model Params (K) Acc (%) 
Shallow Conformer (S)  24.1 52.56 
Shallow Conformer (M) 53.3 54.68 
Shallow Conformer (L) 94.0 53.17 
Shallow Conformer-DNC (S) 34.0 52.73 
Shallow Conformer-DNC (M) 75.1 54.72 
Shallow Conformer-DNC (L) 132.3 55.29 
 

For the second experiment, normalization and data 
augmentation were applied to the proposed model, as detailed 
in Table 3. Normalization was performed using zero mean and 
unit variances for each frequency bin of the log-Mel 
spectrogram [28]. Also, mixup and spectrum augmentation 
were used in the training [11]. Based on the results of the 
experiment, it was confirmed that the use of spectrum 
augmentation showed an absolute performance difference of 
6.8%. 

Table 3: Ablation study of the proposed model using 
normalization and data augmentations. 

Model Params (K) Acc (%) 
Shallow Conformer-DNC (S)  

34.0 

61.25 
w/o normalization 55.05 
w/o mixup ( ) 59.33 
w/o spectrum augmentation 54.45 

 

In the third experiment, the performance of the proposed 
model was compared with that of the state-of-the-art CNNs, as 
presented in Table 4. All the models applied the same 
normalization and data augmentation techniques, as described 
in Table 3. Based on the results of the experiment, it was 
confirmed that the proposed model showed better performance 
than Residual CNN [10] and Small-FCNN [11].  

In the last experiment, the robustness of the proposed 
models and state-of-the-art CNNs under variable-length 
conditions was evaluated, and the results are presented in 
Table 5. The training and testing were conducted using 
recordings with lengths ranging from 1 to 10 sec. Based on the 
results of the experiment, it was confirmed that the proposed 
shallow Conformers outperformed the state-of-the-art CNNs 
when training using a short-length (i.e. 1 to 3 sec). Also, the 
proposed shallow Conformer-DNC achieved a peak accuracy 
of 61.25% with a model parameter of 34 K. This performance 
is comparable to those of state-of-the-art CNNs with 

accuracies ranging from 51.25% to 61.83% and model 
parameters ranging from 34.4 K to 35 K. 

Table 4: Performance comparison between the 
proposed model and state-of-the-art CNNs. 

Model Params (K) Acc (%) 
DCASE 2021 task 1a baseline  46.2 46.40 
Residual CNN [10] 
# num. of stacks & filters = 2 & 10 34.4 51.25 

MobNet [11] 
# num. of filters = {10, 14, 18} 35.0 61.83 

Small-FCNN [11] 
# num. of filters = {14, 26, 38} 34.5 56.64 

Shallow Conformer-DNC (S) 34.0 61.25 
 

Table 5: Robustness test under variable-length 
conditions for the proposed models and state-of-the-
art CNNs (TRL: training recordings length). 

Model TR
L 

Test recordings length 
1s 3s 5s 7s 9s 10s 

Residual 
CNN 
[10] 

1s 37.47 35.34 34.27 31.87 30.86 30.49 
3s 33.79 44.31 45.52 47.24 46.26 37.04 
5s 29.21 42.89 46.87 47.78 48.38 48.62 
7s 27.73 45.55 45.55 48.52 49.43 50.20 
9s 27.80 44.64 44.64 48.11 50.40 50.67 
10s 21.60 45.86 45.86 48.35 50.57 51.25 

MobNet 
[11] 

1s 35.44 34.10 35.28 34.33 33.22 32.28 
3s 26.99 45.22 47.94 51.35 52.70 52.70 
5s 29.28 47.04 52.96 53.98 56.84 55.66 
7s 29.21 46.73 54.35 58.02 59.33 59.80 
9s 28.13 48.11 54.35 59.23 61.46 61.42 
10s 27.16 45.79 53.27 57.72 60.88 61.83 

Small-
FCNN 
[11] 

1s 34.80 36.35 34.70 34.00 32.88 32.14 
3s 36.73 47.98 50.44 50.94 51.08 51.28 
5s 33.93 47.61 54.11 55.80 57.21 58.15 
7s 32.04 49.29 54.14 56.97 58.39 58.89 
9s 30.53 46.66 52.09 54.04 55.86 56.57 
10s 28.81 44.51 49.97 52.96 55.26 56.64 

Shallow 
Confor
mer (S) 

1s 38.11 39.96 39.86 39.76 40.87 40.77 
3s 35.98 49.70 51.08 54.89 55.49 55.83 
5s 30.83 45.82 51.25 55.22 56.97 58.12 
7s 29.55 44.14 51.52 55.56 57.48 59.23 
9s 28.87 43.16 50.24 54.92 58.46 58.36 
10s 25.10 42.52 50.98 55.56 58.69 59.77 

Shallow 
Confor
mer-
DNC (S) 

1s 36.32 37.30 37.84 37.53 36.59 36.59 
3s 34.84 48.05 50.98 53.27 53.57 53.54 
5s 28.54 45.49 52.70 54.82 57.95 58.46 
7s 32.14 44.95 51.55 56.00 57.92 58.79 
9s 29.14 44.78 52.36 55.86 58.05 58.22 
10s 27.90 43.94 51.79 56.37 59.47 61.25 

 

5. Conclusions 
We proposed a shallow Conformer-DNC for the low-
complexity classification of variable-length acoustic scenes. 
The proposed shallow Conformer-DNC can learn short-term 
and long-term contexts of variable-length acoustic scenes 
simultaneously. Based on the results of variable-length 
condition test, the results obtained are comparable to those of 
state-of-the-art CNNs. 
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